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SUMMARY

The objective of this research is to develop a formal safety framework for collision-free

and connectivity sustained motion in multi-robot coordination and learning based control.

This safety framework is designed with barrier certificates, which provably guarantee the

safety of dynamical systems based on the set invariance principle. The barrier certificates

are enforced on the system using an online optimization-based controller such that minimal

changes to the existing control strategies are required to guarantee safety.

To ensure the safety of multi-robot coordination in a provably correct manner, the bar-

rier certificates are synthesized to explicitly enforce collision free and connectivity sus-

tained motion of multi-robot systems. As the team of robots often needs to perform mul-

tiple tasks, Boolean logical compositions of multiple barriers are developed to address

multiple objectives. Furthermore, permissive barrier certificates are computed using Sum-

of-Squares programming to deal with multiple objectives, which might not be compatible

with each other. Experimental implementations of the barrier certificates on the Robotar-

ium, which is a remotely accessible multi-robot testbed at Georgia Institute of Technology,

are highlighted.

In the context of safe learning based control, the barrier certificates regulate the way

that the learned information is used in the actual controller. The unknown dynamics of the

system is learned with Gaussian Processes, which provides a high confidence interval of

the system dynamics. The barrier certificates define a high confidence safe region based on

the learned system dynamics. As more data of the system dynamics is collected, the barrier

certified safe region gradually grows, which means more aggressive system maneuvers are

permitted. The safe learning strategy is demonstrated on a 3D nonlinear quadrotor system

subject to unknown wind disturbances.
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CHAPTER 1

INTRODUCTION

Safety is crucial to many physical dynamical systems, such as autonomous vehicles, indus-

trial robots, and air-traffic control systems [1, 2, 3]. A formal safety framework is developed

in this dissertation to ensure collision free and connectivity sustained motion in the context

of multi-robot coordination and learning based control. We mainly focus on two problems:

in the first we address how to establish provable safety guarantees with minimal impact on

the existing controller and ensure simultaneous satisfaction of multiple objectives for teams

of robots; In the second problem, we study how to get high confidence safety guarantee for

learning based control such that it can be adopted by safety critical dynamical systems.

In order to gain a thorough understanding of these problems, an extensive literature

review of the existing methods is conducted in Chapter 2. In particular, both local and

global algorithms for multi-robot collision avoidance and connectivity maintenance are

discussed. Multiple representative techniques for composing multiple objectives for teams

of robots are analyzed. To investigate the application of learning based control methods

in safety-critical systems, a number of existing safe learning approaches are discussed and

compared in the literature review.

Teams of mobile robots have applications in many areas such as automated warehouse,

precision agriculture, autonomous transportation, and environment monitoring. The design

of multi-robot coordination strategies is typically concerned with realizing primary, global

behaviors, e.g., achieving and maintaining formations, covering areas of interest, envi-

ronmental exploration, and boundary tracking. Due to the complexity of the higher level

controller designs, avoidance behaviors that ensure safety and connectivity of the team are

then added as secondary objectives, resulting in a hierarchical composition of multiple ob-

jectives. Thus, what is ultimately deployed on the system is a combination of a “formally”

2



designed nominal controller together with a “wrapped-around” avoidance algorithm. This

type of avoidance behavior is often not optimal and sometimes too conservative. As the

“robot density” increases, the avoidance behavior might dominate the higher level con-

troller, with the robot spending most of the time avoiding each other and as a result, they

do not progress towards achieving the primary objectives, e.g., [4].

In Chapter 3, we explore how to enforce safe motion in teams of wheeled mobile

robots with minimal impact to the existing higher level controller using barrier certifi-

cates. The key to being able to ensure that the robots avoid collisions is that all poten-

tial, pairwise robot-to-robot collisions are accounted for. As such, a centralized version of

barrier certificates is constructed first to keep track of all robot pairs and then dictate how

the nominal controllers should be modified in order to avoid collisions. Subsequently,

the decentralization of the computation is presented to allow the robots themselves to

make decisions in real-time. As the safety barrier constraints are designed to be decen-

tralized and use only local sensing information, the lack of a central coordination signal

might lead to deadlock among multiple robots with conflicting primary objectives. A novel

deadlock-detection scheme in combination with a consistent perturbation method inspired

by symmetry-breaking traffic rules are developed. Experimental implementations of the

barrier certificates on teams of wheeled mobile robots are presented with highlights on the

remotely accessible multi-robot testbed Robotarium.

Due to recent advances in the design, control, and sensing technology, teams of quadro-

tors have become widely used in aerial robotic platforms, e.g., [5, 6]. Their ability to hover

and fly agilely in three dimensional space makes quadrotors effective tools for surveillance,

delivery, precision agriculture, search and rescue tasks, see e.g., [7, 8, 9]. When teams of

quadrotors are deployed to collaboratively fulfil these higher level tasks, it is crucial to

make sure that they do not collide with each other. The focus of Chapter 4 is to rectify the

nominal flight trajectory, which is generated with existing control and planning algorithms

for teams of quadrotors, in a minimally invasive way to avoid collisions. The differential

3



flatness [10, 11] property of quadrotor dynamics is leveraged to simplify the motion plan-

ning process while still exploiting the nonlinear dynamics (allowing significant deviation

from hovering state and large Euler angles) of teams of quadrotors. All collision-free states

of the quadrotors are encoded in a safe set. Then, Safety Barrier Certificates are synthe-

sized based on the differential flatness property. The feasibility analysis of the certificates

are conducted to ensure that a safe control always exists. The developed safety barrier

certificates are validated on a team of micro quadrotors with aggressive coordinated flights.

Multi-robot coordination strategies are often designed to achieve team level collective

goals, such as covering areas, forming specified shapes, search and surveillance, see e.g.

[12, 13, 14]. As the number of robots and the complexity of the task increases, it becomes

increasingly difficult to design one single controller that simultaneously achieves multi-

ple objectives, e.g., forming shapes, collision avoidance and connectivity maintenance.

Therefore, there is a need to devise a formal approach that can provably compose multiple

objectives for the teams of robots.

The goal of Chapter 5 is to introduce compositional barrier functions to enable general

compositions of multiple non-negotiable objectives. Methods to compose multiple objec-

tives through AND and OR logical operators are developed, and conditions on which ob-

jectives are composable are provided. Secondly, composite safety and connectivity barrier

certificates are synthesized with compositional barrier functions, which ensure collision

free and connected motion in teams of mobile robots for general coordination tasks. The

compositional barrier certificates are implemented experimentally on a multi-robot testbed.

Motivated by the need to simultaneously guarantee safety and stability of safety-critical dy-

namical systems, permissive barrier certificates are constructed to explicitly maximize the

region where the system can be stabilized without violating safety constraints.

Safety is crucial to many physical control dynamical systems, such as autonomous ve-

hicles, industrial robots, and air-traffic control systems [1, 2, 3]. To effectively control

complex dynamical systems, accurate nonlinear models are typically needed. However,

4



these models are not always known. In Chapter 6, we present a data-driven approach

based on Gaussian processes that learns models of quadrotors operating in partially un-

known environments. What makes this challenging is that if the learning process is not

carefully controlled, the system will go unstable, i.e., the quadcopter will crash. To this

end, barrier certificates are employed for safe learning. The barrier certificates establish

a non-conservative forward invariant safe region, in which high probability safety guaran-

tees are provided based on the statistics of the Gaussian Process. A learning controller is

designed to efficiently explore those uncertain states and expand the barrier certified safe

region based on an adaptive sampling scheme. This safe learning strategy is implemented

on a quadrotor flying in an environment with unknown wind disturbance.

A series of Control Barrier Functions (CBF) are introduced or developed in this dis-

sertation to address the safety enforcement problems in different scenarios. A flowchart

visualizing their theoretical development and experimental implementations are provided

in the following page. We will briefly summarize their technical strength as follows:

• Monotone CBF [15]: to construct barrier certificates and verify safety of systems

• Reciprocal CBF [16]: to ensure forward invariance of the safe set

• Zeroing CBF [17]: to ensure both set forward invariance and asymptotic stability

• Exponential CBF [18]: used for system with high relative degrees

• Piecewise Smooth CBF [19]: to deal with piecewise smooth function definitions

• Compositional CBF [19]: to compose multiple objectives with boolean logic

• Permissive CBF [20]: to maximize the safe region subject to multiple constraints

• Learning CBF [21]: to regulate learning controller for partially modeled system

Other useful classes of CBFs, e.g., discrete CBF [22], nonsmooth CBF [23], are not

discussed in this dissertation.
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CHAPTER 2

LITERATURE REVIEW

Barrier certificates are presented in this dissertation as a formal safety enforcement frame-

work for multi-robot coordination and learning based control. There were extensive work

done in related areas of multi-robot collision avoidance, multi-objective compositions, and

safety of learning based control. In this chapter, a comprehensive literature survey is con-

ducted on these relevant existing methods.

2.1 Collision Avoidance for Teams of Robots

The methods to address multi-robot collision avoidance are similar to the methods used for

single robot case, while the complexity of the problem brings extra challenges. The design

of multi-robot coordination strategy is often very complicated, which leads to a divide and

conquer scheme in many cases, i.e., the high level coordination controller and low level

avoidance controller need to be designed separately and then wrapped together [13, 14,

24]. This type of method includes for example the artificial potential field, the dynamical

window approach, the reciprocal velocity obstacle, and the mixed-integer programming

approach.

One common problem with this type of wrapped-around avoidance controller is the ex-

istence of possible local minima. As a consequence, robots might get trapped at the local

minima and make no progress towards their goals. This problem can be overcome by in-

jecting more global information using methods like harmonic potential field and convergent

dynamical window. However, these methods are introduced with a price of extra computa-

tion burden. Next, we will have a brief review of both the local and global methods.
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2.1.1 Artificial Potential Field Approach

The artificial potential field approach defines repulsive potential fields around the obstacles

and attractive potential field around the goal [25, 26]. A generalized force was then calcu-

lated based on the gradient of the overall potential field. Thus, the robot would be pushed

away from the obstacles and dragged towards its goal. The artificial potential field approach

is easy to implement and computationally efficient. However, it is often too conservative

and might lead to unbounded control effort close to the boundary of the obstacles.

A local minima free version of artificial potential field is called the harmonic potential

field [27]. This method is inspired by fluid dynamics and the thermodynamics. By solving

the Laplace equation with appropriate boundary conditions, we can get a harmonic poten-

tial field with no local minima. But as the complexity of the obstacles increases, solving

the PDE numerically become computationally expensive.

2.1.2 Dynamical Window Approach

The dynamical window approach performs collision avoidance in the velocity space [28].

To reduce computation complexity, a finite time window of the velocity space was con-

structed by considering the dynamical model of the robot. The obstacles in the workspace

were also converted into the velocity space of the robot. A best velocity command was then

selected in the admissible control space based on the target heading, obstacle clearance, and

magnitude of velocity.

To overcome the local minima faced by the dynamical window approach, a convergent

dynamical window was developed by adding a navigation function [29]. The collision

avoidance problem was solved as a finite horizon optimal control problem. So that the robot

would only move in the direction that both avoids collisions and decreases the navigation

function. Again, the requirement of a navigation function is a strong assumption, and it is

not clear how this method can be extended to general multi-robot coordination tasks.
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2.1.3 Reciprocal Velocity Obstacle

The reciprocal velocity obstacle approach [30, 31] used a geometric interpretation to avoid

collisions between the robots. The velocity obstacle was defined as the set of all safe

relative velocities that will not lead to collisions within a specified amount of time. The

assumption of constant velocity for the planning horizon makes it not suitable for highly

dynamical collision avoidance maneuvers. Also, it is difficult to generalize the geometric

velocity obstacle to the three dimensional case.

2.1.4 Mixed-Integer Programming

The mixed-integer programming method was used to plan collision-free trajectories for

teams of heterogeneous quadrotors [32]. The trajectories of the quadrotors were planned as

polynomials for simplicity of optimization. The vicinity of the quadrotor was partitioned

into several different sides, which introduced the integer decision variables into the opti-

mization problem. This method is easily applicable to heterogeneous team of quadrotors

with nonlinear dynamics. But the requirement to discretize the trajectories at each time

step makes this method not scalable to large teams of robots.

2.2 Multi-Objective Compositions

Multi-robot coordination strategies are often designed to achieve team level collective

goals, such as covering areas, forming specified shapes, search and surveillance. As the

number of robots and the complexity of the task increases, it becomes increasingly diffi-

cult to design one single controller that simultaneously achieves multiple objectives, e.g.,

forming shapes, collision avoidance, and connectivity maintenance. There are multiple

techniques already developed to composes multiple objectives for the teams of robots. We

will discuss about some representative multi-objective composition methods in this section.
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2.2.1 Cascaded Filter Approach

The cascaded filter approach composed multi-objective of the robot by sequentially remov-

ing undesired control commands from the admissible control set [33]. Multiple objectives

of the system were pre-designed as filters. These filters were then cascaded together based

on the priority of the objectives; lower priority objectives were forced to choose from the

actions that were allowed by the higher level objectives. This method was successfully

applied to simultaneously achieve go-to-goal, collision avoidance, and line-of-sight objec-

tives. But this method has no provable guarantee of the feasibility of the controller.

2.2.2 Hybrid Control Method

A hybrid control method was used in [34] to ensure connectivity preserving flocking, and

simultaneously achieved alignment, cohesion, and separation. The neighborhood of the

agent was partitioned into collision avoidance area, link addition area, and link deletion

area. The network topology control schemes were then combined into a hybrid architecture.

But this method is a task-specific solution to the connectivity preserving flocking problem.

It is not easily applicable to other general networked control problems.

2.2.3 Control Sharing R-function

Different objectives can be encoded into different control Lyapunov functions. If these

Lyapunov functions share negative gradient, then all the corresponding objectives can be

achieved simultaneously [35, 36, 37]. A representative way to combine Lyapunov functions

is to use the “R-functions”, i.e.,

L∧(x) = (φ +1−
√

φ 2 +1)−1(φL1(x)+L2(x)−
√

φ 2L1(x)2 +L2(x)2), (2.1)

where φ > 0 is the mixing constant, L1,L2, and L∧ are two Lyapunov functions and one

composed Lyapunov function, respectively. Notice that L∧ is positive if and only if both L1
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and L2 are positive.

To apply the Lyapunov function composition technique, it is important to check that

the control sharing property is satisfied for every admissible state of the system. But,

this property is often difficult to check. Several analytic results for linear control systems

and polyhedral/quadratic Lyapunov functions were derived in [35]. The other drawback

of the control sharing R-function is that the composed Lyapunov function become very

complicated as the number of objectives increases.

2.2.4 Recentered Barrier Function

The recentered barrier function is a set-theoretic approach [38] to compose multiple ob-

jectives. A single recentered barrier function was used to unify the go-to-goal behavior,

collision avoidance, and proximity maintenance. Each objective is encoded into a con-

strained set Ki j = {(xi,x j) | ci j(xi,x j)≥ 0}, which is associated with a logarithmic barrier

function bi j = − log(ci j(xi,x j)). The barrier function xi j is then recentered based on the

goal of the robot,

xi j = bi j(xi,x j)−bi j(xid,x j)−∇bi j(xid,x j)
T

δxi, (2.2)

where xid is the goal position of robot i. By recentering the barrier function, it is non-zero

everywhere in the constrained set except at the goal position. With this property, the team

of robots will reach their goal positions without colliding with each other. However, the

recentered barrier function was specifically constructed for go-to-goal task, and thus can

not be extended to complex situations easily.

2.2.5 Barrier Lyapunov Function

Multiple objectives can also be achieved simultaneously by uniting the control barrier func-

tion with control Lyapunov function, which yields the Barrier Lyapunov function [39]. The
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Barrier Lyapunov function was designed such that it grows to infinity when some safety ar-

guments approach undesirable limits, and its derivative is always negative semi-definite

[40]. With the Barrier Lyapunov function W (x), the stabilization property of the CLF V (x)

and the safety guarantee of the CBF B(x) can be ensured simultaneously,

W (x) =V (x)+λB(x)+κ, (2.3)

where λ and κ are design parameters to shift the equilibrium point and gradient of the

system. The construction of the Barrier Lyapunov function requires careful design of the

parameters with respect to different bounds on the unsafe region, barrier function, and

Lyapunov function. It also assumes the system has small control property and appropriately

lower bounded barrier function. These assumptions and design constraints make it both

conservative and difficult to apply Barrier Lyapunov functions to multi-robot systems.

2.2.6 Sum-of-Squares Programming

The Lyapunov and barrier constraints are often formulated as non-negativity constraints

which is difficult to verify, since checking non-negativity is often computationally in-

tractable [41]. However, if we restrict interested systems to polynomial dynamical systems,

Sum-of-Squares (SOS) programming technique can be used to greatly simply the compu-

tation. When non-negativity constraints are relaxed to SOS constraints, these complex

optimization problems can be converted to numerically efficient convex problems.

Let P be the set of polynomials for x ∈ Rn. The polynomial l(x) can be written in

Square Matrix Representation (SMR) [42] as ZT (x)QZ(x), where Z(x) is a vector of mono-

mials, and Q ∈ Rk×k is a symmetrical coefficient matrix. A polynomial function l(x) is

nonnegative if l(x)≥ 0,∀x ∈ Rn. Furthermore, p(x) is a SOS polynomial if

p(x) =
m

∑
i=1

p2
i (x)
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for some pi(x) ∈P . If written in SMR form, p(x) has a positive semidefinite coefficient

matrix Q� 0.

SOS is used to formulate computationally efficient solutions to problems that contains

multiple constraints. For instance, safe stabilization funnels based on sublevel sets of the

Lyapunov function were calculated with SOS in [43]. Typical Domain of Attraction esti-

mation [42] and barrier certificates design [15] methods all rely on SOS frameworks.

2.3 Safety of Learning Based Control

The existence of model inaccuracies and unknown disturbances create a great challenge to

the design of safe controllers for safety critical systems. Tools such as robust control and

adaptive control methods have been developed in classic control theory to ensure the safety

and stability of the system, see [44, 45] and the references therein. Meanwhile, machine

learning based control approaches are becoming increasingly popular as a way to deal with

inaccurate models [46, 47], due to their abilities to infer unknown models from data and

actively improve the performance of the controller with the learned model. Learning based

control approaches require only limited expert knowledge and fewer assumptions about

the system [48]. However, there always exists an inherent trade-off between safety and

performance in these methods [49]. Data-driven learning approaches rarely provides safety

guarantees, which limits their applicability to real-world safety critical control dynamical

systems [48].

In order to promote the application of learning based control methods in safety-critical

systems, a number of safe learning approaches [50, 51, 52, 53, 54, 55, 56] have been

proposed in the literature.

2.3.1 Lyapunov Based Approach

Among these methods, the use of learning Control Lyapunov Functions (CLF) is shown

to be a promising approach. A learning from demonstration method was developed in
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[57] to search for a CLF from several demonstrations, and the learned CLF was used to

stabilize the system. But the learned controller did not consider actuator limits and other

safe operation constraints. [58] introduced a verifier to explicitly validate the learned CLF.

However, when the model of the system is inaccurate, the verifier needs to check an infinite

number of inequalities throughout the state space, which is computationally difficult [59].

[60] seeks to learn CLF and maximize the safe operation region for the system with GP

model. High probability safety guarantees are provided based on Lyapunov stability and

GP statistics.

2.3.2 Reachability Analysis

A reachability-based safe learning approach was presented in [61] to reduce the conserva-

tiveness of reachability analysis by learning the disturbance from data. The safe constraint

set K is a compact set that the system state should not leave. With the Hamilton-Jacobi-

Isaacs (HJI) reachability analysis, the discriminating kernel DiscT(K ,D) of K with re-

spect to the disturbance set D and a time horizon T= [0,τ] can be computed. The discrim-

inating kernel DiscT(K ,D) contains all initial states which can be contained within K by

a feasible controller for any disturbance from D for some time horizon τ > 0. The distur-

bance set D is shrunk based on the collected data over time to reduce the conservativeness

of the learning algorithm. To ensure the safety of the learning process, a safety preserving

action is only required near the boundary of DiscT(K ,D). However, due to the complex-

ity of the HJI reachability analysis, the convergence of the computation of DiscT(K ,D)

for a sufficiently large time horizon is assumed as a prior.
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CHAPTER 3

BARRIER CERTIFICATES FOR WHEELED MOBILE ROBOTS

The safety barrier certificates are synthesized with control barrier functions (CBF) in this

chapter to ensure the safety of the multi-robot team. We will first review some fundamentals

behind CBFs and then retool them to ensure that teams of robots are collision-free.

3.1 Control Barrier Functions

The basic idea of CBF is to define a set of safe states and then use the CBF to formally

guarantee the forward invariance of the desired set, i.e., if the system starts in the safe set,

it stays in the safe set [62, 63]. There are multiple types of CBFs in the literature [40, 62,

63]. We will focus on the zeroing control barrier function (ZCBF), since it comes with both

non-conservative set invariance and robustness properties [64, 65].

For the sake of generality, we first consider dynamical systems on control affine form

ẋ = f (x)+g(x)u, (3.1)

where the state x ∈ Rn and control u ∈U ⊂ Rm, f and g are locally Lipschitz continuous.

Let the set C = {x ∈Rn | h(x)≥ 0} be the safe set, where h : Rn→R is a ZCBF candidate

function. We note that dh(x)
dt = ∂h(x)

∂x ẋ = ∂h(x)
∂x ( f (x)+ g(x)u), or, using the Lie derivative

formalism dh(x)
dt = L f h(x)+Lgh(x)u.

Definition 3.1.1 Given a dynamical system (3.1) and a set C ⊂ Rn for a smooth function

h : D → R, with C ⊆ D ⊂ Rn. h is called a Zeroing Control Barrier Function (ZCBF), if

there exists an extended class-K function κ (strictly increasing, κ(0) = 0) such that

sup
u∈U
{L f h(x)+Lgh(x)u+κ(h(x))} ≥ 0,
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for all x ∈D .

Given a ZCBF h(x), the admissible control space S(x) can be defined as

S(x) =
{

u ∈U | L f h(x)+Lgh(x)u+κ(h(x))≥ 0
}
, x ∈D ,

To guarantee that C is forward invariant, we can use the following theorem.

Theorem [62]. Given a set C ⊂ Rn and a ZCBF h defined on D , with C ⊆ D ⊂ Rn, any

Lipschitz continuous controller u : D → R such that u ∈ S(x) for the system (3.1) renders

the set C forward invariant. And C is asymptotically stable in D .

By allowing the derivative of the barrier certificate to grow within the safe set C , this

barrier certificate can ensure the forward invariance of C in a non-conservative manner as

shown in Fig. 3.1. Since the barrier certificates synthesized with ZCBF provide a non-

conservative way to ensure provable safety, they can contribute to various useful controls

applications.

Figure 3.1: Examples of non-conservative CBFs for set invariance. The diamonds and
curves are example initial states and allowed state trajectories, respectively. The state is al-
lowed to grow or even approach the boundary from inside the safe region. Outside the safe
region, the state will converge asymptotically to the safe region, due to CBF constraints.

The improvement of barrier certificates based on ZCBF can be illustrated with a simple

example. Using the SOS technique described in [15], we can compute the certified safe
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regions for two types of barrier certificates. The first type of barrier certificates is based on

a strictly non-increasing barrier function (ḣ≥ 0), while the second type is based on ZCBF

(ḣ≥−κ(h(x))).

Consider a 2D autonomous dynamical system,

ẋ1

ẋ2

=

 x2

−x1 +
1
3x3

1− x2

 .
The initial and unsafe sets are specified as X0 = {x | 0.25− (x1− 1.5)2− (x2 + 1)2 ≥ 0}

and Xu = {x | 0.25− (x1 + 1.4)2− (x2 + 1.6)2 ≥ 0}, respectively. Both types of barrier

certificates can be illustrated in Fig. 3.2. The area of the barrier certified safe region

generated with ḣ ≥ −κ(h(x)) is much larger than ḣ ≥ 0, which means that ḣ ≥ −κ(h(x))

allows for a significantly more permissive safety certificate than ḣ≥ 0.

-4 -2 0 2 4

x1

-4

-2

0

2

4

x
2

Xu

X0

h1 (ḣ1 ≥ 0)

h2 (ḣ2 ≥ −2h2)

Figure 3.2: Comparison of two types of barrier certificates. The barrier certified safe region
based on ḣ≥−κ(h(x)) (area between the solid green lines) is significantly larger than the
safe region based on ḣ ≥ 0 (area between the dashed red lines). X0 and Xu are the initial
and unsafe set, respectively.
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3.2 Centralized Safety Barrier Certificates

Consider a multi-robot system consisting of N planar, mobile robots, indexed by M =

{i | i = 1,2, . . . ,N}. We model the robot dynamics as double integrators

ṗi

v̇i

=

0 I2×2

0 0


pi

vi

+
 0

I2×2

ui, (3.2)

where pi ∈ R2, vi ∈ R2, and ui ∈ R2 represent the positions, velocities, and inputs (accel-

eration commands) of agent i respectively. The velocity and acceleration of agent i are

limited by ‖vi‖∞ ≤ βi and ‖ui‖∞ ≤ αi. The aggregate states and inputs of all N agents are

denoted as (p,v) ∈ R4N and u ∈ R2N .

Next, a pairwise robot-to-robot safety constraint is formulated to guarantee that a safety

distance Ds between any two agents can be ensured. Algorithms to avoid imminent col-

lision with static obstacles were developed in [28, 29] by decelerating the agent to zero

velocity with the maximum braking force. However, to avoid imminent collision with a

moving agent, the relative velocity between two agents needs to be reduced to zero instead

of the absolute velocity. Consider any two agents i and j, the relative position and relative

velocity between them are ∆pi j = pi−p j and ∆vi j = vi−v j. As illustrated in Fig. 3.3, the

normal component of the relative velocity (∆v̄ = ˙‖∆pi j‖=
∆pT

i j
‖∆pi j‖∆vi j) is the actual compo-

nent that might lead to collision between agents i and j, while the tangent component of

∆vi j only leads to rotation around each other. Therefore, we need to regulate ∆v̄ so that

imminent collisions can be avoided if the maximum relative braking force is applied.

Assuming the normal component of the relative velocity between agents i and j is

∆v̄(t0) at the current time instance t0, it takes the time Tb =
0−∆v̄(t0)

αi+α j
to reach ∆v̄(t0+Tb) = 0,

while the maximum braking acceleration (αi +α j) is applied to both robots. In order to

remain farther away from the safety distance Ds, the following safety constraint needs to
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Figure 3.3: Relative position and velocity between two agents

be satisfied,

‖∆pi j‖+
∫ t0+Tb

t0
∆v̄(t0 + t)dt ≥ Ds, ∀ i 6= j,

where ∆v̄(t0 + t) = ∆v̄(t0)+(αi +α j)t, which means that

‖∆pi j‖−
(∆v̄)2

2(αi +α j)
≥ Ds, ∀ i 6= j. (3.3)

Note that this safety constraint only needs to be enforced when agents are moving closer

to each other, i.e., when ∆v̄ ≤ 0. It is always considered safe when the agents are moving

away from each other, i.e., when ∆v̄ > 0. By combining this observation with the constraint

in (3.3) gives

−
∆pT

i j

‖∆pi j‖
∆vi j ≤

√
2(αi +α j)(‖∆pi j‖−Ds), ∀ i 6= j.

As such, the pairwise safe set Ci j is defined as

Ci j = {(pi,vi) ∈ R4 | hi j(p,v)≥ 0}, ∀ i 6= j,

hi j(p,v) =
√

2(αi +α j)(‖∆pi j‖−Ds)+
∆pT

i j

‖∆pi j‖
∆vi j, (3.4)

where hi j(p,v) is the level set function of the set Ci j as well as the ZCBF candidate used
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to ensure the forward invariance of Ci j. To make the safe set forward invariant, the safety

barrier constraint can be written as

−∆pT
i j∆ui j ≤ γh3

i j‖∆pi j‖−
(∆vT

i j∆pi j)
2

‖∆pi j‖2 +‖∆vi j‖2 +
(αi +α j)∆vT

i j∆pi j√
2(αi +α j)(‖∆pi j‖−Ds)

.

This safety barrier constraint can be written as a linear constraint in ui and u j, which in turn

can be represented as Ai ju≤ bi j, with

Ai j = [0, ...,−∆pT
i j︸ ︷︷ ︸

agent i

, ..., ∆pT
i j︸︷︷︸

agent j

, ...,0],

and bi j = γh3
i j‖∆pi j‖−

(∆vT
i j∆pi j)

2

‖∆pi j‖2 +
(αi+α j)∆vT

i j∆pi j√
2(αi+α j)(‖∆pi j‖−Ds)

+‖∆vi j‖2.

We denote all pairwise safety barrier constraints as the centralized safety barrier cer-

tificates for the multi-robot system, i.e.,

Su = {u ∈ R2N | Ai ju≤ bi j,∀ i 6= j}. (3.5)

The safe set C for the overall system is now formally defined as,

C = ∏
i∈M


⋂

j∈M
j 6=i

Ci j

 ,

where the product is the Cartesian product over the state space of all agents. The following

result is presented to ensure the safety of the multi-robot system.

Theorem 3.2.1. Given a multi-robot system indexed by M with dynamics in (3.2), if the

controller u satisfies the centralized safety barrier certificates in (3.5), and (p(0),v(0)) ∈

C , then the multi-robot system is guaranteed to be safe.

Proof. If the controller satisfies the centralized safety barrier certificates, then u(t) is al-

ways constrained inside the admissible control space Su and satisfies all the pairwise safety
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barrier constraints. As ensured by the ZCBFs in [62], Ci j is forward invariant for all i 6= j,

i.e., C is forward invariant. Since (p(0),v(0)) ∈ C , (p(t),v(t)) will stay in C for all time.

Hence, the multi-robot system is guaranteed to be safe.

Minimally Invasive Collision Avoidance using a QP-based Controller

The QP-based controller which minimizes the difference between the actual control com-

mand ui and nominal control command ûi, while ensuring safety using the centralized

safety barrier certificates, is formulated as,

u∗ = argmin
u∈R2N

J(u) =
N

∑
i=1
‖ui− ûi‖2

s.t. Ai ju≤ bi j, ∀ i 6= j,

‖ui‖∞ ≤ αi, ∀ i ∈M .

(3.6)

The resulting controller u mimics the nominal controller û completely when the system is

safe, and only modifies its behavior when collisions are truly imminent.

Reduced Neighborhoods

The centralized safety barrier certificates in the previous section considers all pairs of

robots, which is potentially a very large number. Topologically speaking, that requires

all-to-all interactions, i.e., a complete graph. As a result, the associated computation and

sensing requirements will increase significantly as the number of robots increases. Mo-

tivated by the fact that agents sufficiently far apart will not collide within a finite time

horizon, a neighborhood notion should be developed that reduces the required information

structure to a disk graph, i.e., only pairs of nearby (within a certain distance) robots are

needed, as shown in Fig. 3.4. The neighborhood set of agent i is thus defined as

Ni = { j ∈M | ‖∆pi j‖ ≤ Di
N , j 6= i}, (3.7)
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where

Di
N = Ds +

1
2(αi +αmin)

(
3

√
2(αi +αmax)

γ
+βi +βmax

)2

is the choice of the radius of the neighborhood which will be elucidated later, αmin =

min
j∈M
{α j} and αmax = max

j∈M
{α j} are lower and upper bounds of all agents’ acceleration

limits, and βmax = max
j∈M
{β j} is the upper bound of all agents’ speed limits.

(a) Complete graph (b) Disk graph

Figure 3.4: Reduced information requirement graph

With this notion of neighborhood, we will say that each agent only needs to consider

its nearby agents to avoid collision, even though the computation, so far, is done by a

centralized unit. This, however, will be related in subsequent sections. A similar notion

for agents with identical acceleration limits was derived in [66], and here safety barrier

certificates are synthesized with ZCBFs for agents with different acceleration limits.

Theorem 3.2.2. Agent i ∈M only needs to form ZCBFs with its neighbors, as defined in

(3.7), to guarantee safety.

Proof. See Appendix

With Theorem 3.2.2, the QP-based controller (6.13) can be simplified by only checking
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the safety of a multi-robot system with disk information graph.

u∗ = argmin
u∈R2N

J(u) =
N

∑
i=1
‖ui− ûi‖2

s.t. Ai ju≤ bi j, ∀ i ∈M , ∀ j ∈Ni,

‖ui‖∞ ≤ αi, ∀ i ∈M .

(3.8)

The radius Di
N of the disk information graph can be designed by choosing appropriate

γ , such that Di
N is no larger than the sensing range of agents. Note that this notion of

neighborhood is still valid when the safety barrier certificates are distributed to individual

agent.

Simulated Centralized Safety Barrier Certificates

The centralized safety barrier certificates are validated on a simulated multi-robot system

consisting of 20 agents modelled with double integrator dynamics. The nominal controller

is designed to make all agents swap their positions with the agents on the opposite side.

With the safety barrier certificates, all robots successfully navigated through the “crowded”

region and swapped positions without colliding into each other as shown in Fig. 3.5.

3.3 Decentralized Safety Barrier Certificates

The centralized safety barrier certificates ensure provably safe multi-robot coordination,

while the reliance on a central coordination unit potentially compromises the multi-robot

system’s scalability, reactiveness, and robustness. To address those issues, the safety barrier

certificates can be distributed to individual agents without losing the safety guarantee.

−∆pT
i jui ≤

αi

αi +α j
bi j,

∆pT
i ju j ≤

α j

αi +α j
bi j.
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Figure 3.5: Simulation results of a multi-robot position swapping task regulated by the
centralized safety barrier certificates. The circles and arrows represent the current positions
and velocities of the agents. The safety distance Ds = 10.

For more details about decentralized safety barrier certificates for heterogeneous multi-

robot systems, we refer the reader to [64]. With the decentralized safety barrier constraints

and the notion of neighborhood, the sensing and computation tasks are completely dis-

tributed to each individual agent. Each agent i ∈M runs their own QP-based controller,

u∗i = argmin
ui∈R2

J(ui) = ‖ui− ûi‖

s.t. Āi jui ≤ b̄i j, ∀ j ∈Ni,

‖ui‖∞ ≤ αi,

(3.9)

where Āi j =−∆pT
i j, b̄i j =

αi
αi+α j

bi j.

When the safety barrier certificates are distributed to each individual agents, the safety

of the multi-robot system is still guaranteed by the following result.

Theorem 3.3.1. Given a multi-robot system indexed by M with dynamics in (3.2), if the
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controller ui satisfies the decentralized safety barrier certificates in (3.9) for all agent i ∈

M , and (p(0),v(0)) ∈ C , then the multi-robot system is guaranteed to be safe.

Proof. If all agents’ controllers satisfy the decentralized safety barrier certificates, then Ci j

is forward invariant ∀i ∈M , j ∈Ni, as ensured by the ZCBFs. When j /∈Ni, (pi,vi) still

stays in Ci j due to Theorem 3.2.2. Therefore, C is forward invariant, and this completes

the proof.

Although safety is still ensured, the collision avoidance interventions enforcing the

decentralized safety certificates have to happen earlier than the centralized case due to the

lack of central coordination.

Computational Complexity and Solver Details

The computational complexity of the QP for enforcing the safety barrier certificates is

analyzed in this section. The number of decision variables Md and the number of linear

constraints Mc are two important factors that determine the computation complexity of

the QP. As shown in Table 3.1, the decentralized safety barrier certificates are scalable to

arbitrarily large groups of robots.

Table 3.1: Computational Complexity of the Certificates

Type of Certificate Md Mc (worst case)

Centralized 2N N(N−1)
2

Centralized with Neighborhood 2N N
2 min{N−1,ceiling(D2

N
D2

s
)}

Decentralized 2 N−1

Decentralized with Neighborhood 2 min{N−1,ceiling(D2
N

D2
s
)}

The actual computation times of the certificates per iteration are listed in Table 3.2.

The decentralized barrier certificates can handle more than 100 robots with an update rate
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of more than 100 Hz. All the computations are performed on an Ubuntu laptop with a 2.60

GHz Intel Core i5 processor using the MATLAB quadprog solver.

Table 3.2: Computation Time of the Certificates

Computation Time per Iteration (ms)

Type of Certificate N = 20 N = 60 N = 100

Centralized with Neighborhood 11.8 28.8 238.3

Decentralized with Neighborhood 6.00 5.99 8.05

3.4 Consistent Perturbation for Deadlock Resolution

When the objectives of multiple agents conflict with the safety barrier certificates, the

agents might get stuck into a deadlock. In the deadlock scenario, the agents are safe but

their tasks can not be completed. Deadlock occurs because the safety barrier certificates

are designed to take the local information only. In order to detect and resolve the deadlock

issue, we first come up with a definition of the deadlock.

Definition VII.1. A robot agent i is said to be stuck in a deadlock, if it remains stationary

(ui = 0 and vi = 0) and the nominal control command ûi 6= 0.

With this definition, the deadlock scenarios can be further classified into three types

based on the solution to the QP problem in (3.9). The admissible control space for the QP

problem is a convex polygon Pi defined as the intersection of multiple half spaces, i.e.,

Pi = {ui ∈ R2 | Āi jui ≤ b̄i j,∀ i 6= j},

where Pi is a decentralized counterpart of the centralized admissible control space Su in

3.5. The size of the feasible control space, termed the width of the feasible set [67], can be
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evaluated with a Linear Program (LP),

min
ui∈R2,δLP∈R

δLP

s.t. Āi jui ≤ b̄i j +δLP, ∀ i 6= j,

‖ui‖∞ ≤ αi.

The solution of the LP characterizes how much control margin is left for the strictest safety

barrier constraint. If δLP ≤ 0, the corresponding QP is solvable. A more negative δLP

indicates larger admissible control space. Otherwise, no feasible control option is available,

and the admissible control space is empty.

The deadlock scenarios are categorized into the following three cases based on the

relation between ui and Pi

1. Type 1 Deadlock: δLP < 0,ui = 0 ∈ vertex(Pi);

2. Type 2 Deadlock: δLP < 0,ui = 0 ∈ edge(Pi);

3. Type 3 Deadlock: δLP ≥ 0.

It should be noted that these three types of deadlock comprise all possible types of

deadlocks. This is because ui is either on the edge or the vertex of Pi, when the opti-

mal solution of the constrained QP controller (ui = 0) is different from the unconstrained

optimal solution (ûi 6= 0), due to Karush-Kuhn-Tucker (KKT) conditions [68].

More intuitively, these three deadlock scenarios are illustrated in Fig. 3.6.

Agent i

Agent j

Agent k
ui uk

uj

(a) Type 1 Deadlock

Agent i

Agent j

ui
uj

(b) Type 2 Deadlock

Agent i

u
i

(c) Type 3 Deadlock

Figure 3.6: Three types of Deadlocks for robot agent i in a multi-robot system.

27



One way to resolve the deadlock scenarios is to perturb the QP controller so that the

robot agents can move around each other when they get stuck. The QP controller needs

to be perturbed consistently, because multiple robot agents might still be acting against

each other with random perturbations. Inspired by the traffic rule used in transportation

to resolve conflicts [69, 70], the following consistent perturbation method is proposed to

resolve different deadlocks

1. Type 1 Deadlock: As illustrated in Fig. 3.7a, the left barrier constraint is relaxed

(kγ(left) > 1) and the right barrier constraint is compressed (kγ(right) < 1).

2. Type 2 Deadlock: As illustrated in Fig. 3.7b, ûi is perturbed with δ⊥ = kδ

[
0 −1
1 0

]
ûi,

which is a normal perturbation to the left of ûi.

3. Type 3 Deadlock: ui = 0, no perturbation is performed since no admissible perturba-

tion is available.

Note that the online relaxation of the left and right barrier constraints is enabled by the

relaxed ZCBF introduced in section V of [71].

The deadlock resolution strategies are consistent for different types of deadlocks in that

a clockwise motion will emerge for all agents involved in the deadlock. Therefore when

multiple agents get into a deadlock, they will be perturbed to give way to the agent on the

right side as if traffic rules are enforced.

Proposition 3.4.1. Type 1 and Type 2 deadlocks are resolved with the Decentralized Dead-

lock Detection Resolution Algorithm 1 in the Appendix.

Proof. For Type 1 Deadlock, ui = 0 ∈ vertex(Pi). When the left barrier constraint is

relaxed and the right barrier constraint is compressed, ui = 0 /∈ vertex(P ′
i ) as shown in

Fig. 3.7a. Therefore, the optimal control command to the perturbed QP-based controller is

ūi 6= 0.

For Type 2 Deadlock, ui = 0 ∈ edge(Pi). Due to Karush-Kuhn-Tucker (KKT) condi-

tions, ûi is perpendicular to the edge of Pi, otherwise ui = 0 is not the optimal solution
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(a) Type 1 Deadlock, green(Pi)/blue(P ′
i ) polygons

represent original/perturbed feasible control space.

ux

uy

ûi
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Pi
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(b) Type 2 Deadlock, the green polygon
(Pi) is the feasible control space.

Figure 3.7: Deadlock resolution methods, where ûi, ui = 0 and ūi are the nominal, original
and adjusted control commands respectively.

for the QP. When δ⊥, a perturbation normal to ûi, is applied, ui = 0 is no longer the opti-

mal control command to the perturbed QP-based controller. Therefore, the actual control

command ūi 6= 0 as shown in Fig. 3.7b.

Combining the two cases, the adjusted control command ūi is non-zero without com-

promising the safety guarantee. Therefore, Type 1 and Type 2 Deadlocks are resolved.

In Fig. 3.13, the Decentralized Deadlock Detection Resolution Algorithm 1 in the

Appendix is validated against different deadlock scenarios. The algorithm successfully

perturbed agents away from deadlock scenarios in a consistent way (clockwise rotation

around each other emerges in both cases).

The consistent perturbation approach provides solutions to resolve all types of dead-

locks except Type 3 deadlocks. In addition, livelock might still exist even if deadlock is

resolved. This is because the safety barrier certificates in this dissertation is proposed to

provide safety guarantee regardless of the purpose of the nominal controller. As the safety

controller is not informed about what the nominal controller is ultimately trying to achieve,

livelock becomes a somewhat diffuse concept. One possible idea could be to combine the

safety certificates with navigation functions, such that the robots only move in the direc-
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Figure 3.8: Simulated deadlock resolution. The circles, arrows and dashed lines repre-
sent the current positions, velocities and trajectories of different agents respectively. The
cross markers represent the places where the deadlock occurs and the deadlock resolution
algorithm is active.

tions where the navigation function decreases.

3.5 Experimental Implementation

The decentralized safety barrier certificates works for both homogeneous and heteroge-

neous teams of robots. In this section, experimental results are presented to validate the

barrier certificates on a multi-robot testbed.

3.5.1 Decentralized Barrier Certificates on a Homogeneous Team of Robots

The decentralized safety barrier certificates were implemented on a multi-robot system

consisting of multiple Khepera III robots. The higher level goal of the experiment was

to make all robots in the multi-robot system swap positions with each other in a confined

workspace, where collisions were very likely to occur. With the decentralized safety bar-

rier certificates, all the robots successfully swapped their positions with the robots on the

opposite side of the workspace without collisions as shown in Fig. 3.10.
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Figure 3.9: Experiment of eight Khepera robots swapping positions in a confined
workspace. The pictures on the left are taken with an overhead camera. The stars and
lines representing the target positions and pairs of swapped positions are projected onto the
floor using a projector. The figures on the right illustrate the actual positions, velocities and
trajectories of the robots. A video of the experiment can be found online [72].
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3.5.2 Decentralized Barrier Certificates on a Heterogeneous Team of Robots

The heterogeneous safety barrier certificates were implemented on a heterogeneous robotic

swarm with three Khepera III robots (αK = 2.0 m/s2) and one Magellan Pro robot (αM =

0.5 m/s2). The positions of robots are tracked by Optitrack motion capture system. Those

two types of robots have distinct dimensions and dynamical capabilities. The diameters of

Khepera III and Magellan Pro robots are 13 cm and 41 cm. The actual dynamical model

of mobile robots used in this experiment is unicycle model, which is approximated with

double integrated dynamics using Lyapunov based approach. The pre-designed controller

is a goal-to-goal controller (ûi = −k1(pi− ri)− k2vi), which exchanges the positions of

agents on the diagonal line of a rectangle, without considering collision avoidance. The

heterogeneous safety barrier certificates were executed as a lower level safety program

with no knowledge about overall goal of the higher level controller.

Fig. 3.10 shows a overhead view of the robots during the experiment and plots of

corresponding experimental data. All four robots started heading straightly towards the

opposite side of the rectangle (Fig. 3.10a). The safety barrier was inactive because the pre-

designed coordination control command is considered safe. When robots moved closer,

the safety barrier interfered because collision was about to happen. As illustrated in (Fig.

3.10b), three Khepera III robots turned around to avoid collision, while the Magellan robot

kept pushing forward. This is because Magellan Pro robot has more momentum and can

not brake fast enough to avoid collision. Those more agile Khepera III robots carried more

responsibilities in collision avoidance when Magellan Pro robot reacted slowly. When the

Magellan Pro robot almost reached its goal position and became slower in motion, other

Khepera III robots got the chance to pursue their goals (Fig. 3.10c). It can be observed

that the safety barrier directed robots away from collision and computes the command

that is closest to pre-designed control command. After robots navigated away from the

”crowded” area, the pre-designed controller took over again. At last, all robots reached

desired configuration, i.e. exchange position with robots on the opposite side (Fig. 3.10d).
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Compared with the experiments performed in the homogeneous case, the heterogeneity

in the robots’ dynamical capabilities brought more challenges to guarantee the safety of

the robotic swarm. Those challenges in the experiment have been successfully addressed

by the heterogeneous safety barrier certificates. Meanwhile, the safety barrier certificates

are implemented in a minimal invasive manner, which provides a faster way to develop and

validate multi-agent algorithm without worrying about collision avoidance.
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Figure 3.10: Test run of three Khepera robots (small circles) and one Magellan robot (large
circle) with heterogeneous safety barrier certificates. The arrow, circle and dashed line
represent current velocity, position and trajectory of robot agents. The square markers
stand for initial and goal positions.
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3.6 Applications in the Robotarium

The Robotarium is a remotely accessible open-access swarm robotic research platform

[65]. It is developed to allow robotics researchers to implement swarm algorithms on the

real robots without significant investments of manpower and resources. The prototype

of the Robotarium is a table top equipped with multiple miniature sized GRITSBot [73]

and wireless charging module as shown in Fig. 3.11. Now it has grown to room-sized

experimental platform with remote users from around the world as illustrated in Fig. 3.12.

Figure 3.11: Table top version of the Robotarium

The Robotarium uses Safety Barrier Certificates to ensure provably collision-free be-

havior of all robots, which ensures the following three principles.

• All robots are provably safe in the sense that collisions are avoided.

• Users’ commands are only modified when collisions are truly imminent.

• Collision avoidance is executed in real-time (in excess of 30 Hz update rate).

Safety barrier certificates are enforced through the use of control barrier functions, which

are Lyapunov-like functions that can provably guarantee forward set invariance, i.e. if the
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Figure 3.12: Current version of the Robotarium

system starts in the safe set, it stays in the safe set for all time. A specific class of maximally

permissive control barrier functions was introduced in [16], whose construction provides

the basis for the minimally invasive safety guarantees afforded by the Robotarium.

Consider a team of N mobile robots with the index set M = {1,2, ...,N}. Each robot i

uses single integrator dynamics of the form ẋi = ui, where xi ∈ R2 is the planar position of

robot i, and ui ∈ R2 is its input velocity.1 Additionally, robot i’s velocity ui is bounded by

‖ui‖ ≤ α,∀i ∈M . Let x = [xT
1 ,x

T
2 , ...,x

T
N ]

T and u = [uT
1 ,u

T
2 , ...,u

T
N ]

T denote the aggregate

state and velocity input of the entire team of robots. To avoid inter-robot collisions, any

two robots i and j need to maintain a minimum safety distance Ds between each other. This

requirement is encoded into a pairwise safe set Ci j, which is a super level set of a smooth

1Single integrator dynamics can be easily mapped to the GRITSBot’s unicycle dynamics using a nonlinear
inversion method. It is important to note that safety barrier certificates can be extended to more complex
dynamical systems as well.
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function hi j(x),

Ci j = {xi ∈ R2 | hi j(x) = ‖xi− x j‖2−D2
s ≥ 0}, ∀ i 6= j. (3.10)

The function hi j(x) is called a control barrier function, if the admissible control space

Ki j(x) =
{

u ∈ R2N
∣∣∣∣ ∂hi j(x)

∂x
u≥−γhi j(x)

}
, (3.11)

is non-empty for all xi ∈ Ci j. It was shown in [62] that if the control input u stays in Ki j(x)

for all time, then the safe set Ci j is forward invariant. In addition, the forward invariance

property of Ci j is robust with respect to different perturbations on the system.

Combining (4.7) and (3.11) as well as the single integrator dynamics, the velocity input

u needs to satisfy

−2(xi− x j)ui +2(xi− x j)u j ≤ γhi j(x), ∀ i 6= j.

This inequality can be treated as a linear constraint on u when the state x is given, i.e.,

Ai ju≤ bi j, ∀ i 6= j, where

Ai j = [0, . . . ,−2(xi− x j)
T︸ ︷︷ ︸

robot i

, . . . ,2(xi− x j)
T︸ ︷︷ ︸

robot j

, . . . ,0]

bi j = γhi j(x).

Similar constraints must be established for the workspace boundary. The corresponding

safety set of robot i with regards to the boundary is denoted by C̄i, and the corresponding

constraints by Āiui ≤ b̄i, ∀ i ∈M .

Combining these constraints – all pairwise collisions and collisions with the workspace
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boundaries – results in the safety set for the entire team as

C = ∏
i∈M

{ ⋂
j∈M
j 6=i

Ci j
⋂

C̄i

}
.

The forward invariance of the safe set C is guaranteed by the safety barrier certificates,

which are defined as

K(x) =
{

u ∈ R2N ∣∣ Ai ju≤ bi j, Āiui ≤ b̄i, ∀ i 6= j
}
. (3.12)

These safety barrier certificates define a convex polytope K(x) in which safe control com-

mands must stay. By constraining users’ control commands to within K(x), the Robotarium

is guaranteed to operate in a provably collision-free manner.

The minimally invasive nature of barrier certificate-enabled collision avoidance stems

from the fact that the deviation between the user-specified control signal and the actual,

safe, executed signal is minimized, subject to the safety constraints through a Quadratic

Program (QP)-based controller

u∗ = argmin
u∈R2n

J(u) =
N

∑
i=1
‖ui− ûi‖2

s.t. Ai ju≤ bi j, ∀ i 6= j,

Āiui ≤ b̄i, ∀ i ∈M ,

‖ui‖∞ ≤ α, ∀ i ∈M ,

(3.13)

where û is the user’s control command, u∗ is the actual control command, and α is the

bound for the control input. Note that in the absence of impending collisions (i.e. when

the safety barrier certificates in (3.12) are satisfied), the user’s code is executed faithfully.

When violations occur, a closest possible (in a least-squares sense) safe control command

is computed and executed instead. An experiment showing ten GRITSBots swapping po-
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sitions with active safety barrier certificates is shown in Fig. 3.13, while the corresponding

video is referenced in [74].

(a) Time 2.67s (b) Time 9.50s (c) Time 19.83s

Figure 3.13: Ten GRITSBots swap positions with active safety barrier certificates. The
robots’ trajectories are shown together with square markers representing their initial posi-
tions.

Scalability of Safety Barrier Certificates

Safety barrier certificates are computed in a centralized fashion on the Robotarium’s back

end server and therefore scalability is a concern. The following analysis shows the feasibil-

ity of barrier certificates for large swarms. As the size of the swarm increases, the number

of decision variables (u) in the QP-based controller increases linearly, while the number

of pairwise safety constraints grows quadratically. However, a more computationally effi-

cient implementation similar to [66] is possible, where agent i only considers its neighbors

for collision avoidance and the certificates computation can be distributed to individual

agents. More specifically, the robot’s finite physical dimensions limit the maximum robot

density. For example, for a minimum safety distance of Ds = 8cm and a neighborhood

radius of 20cm, any given neighborhood can contain at most 26 other robots, which limits

the size of each individual robots QP problem to 2 decision variables and at most 26 lin-

ear constraints. More specifically, for a minimum safety distance between GRITSBots of

Ds = 8cm and a GRITSBot’s neighborhood radius of, for example, 20cm, there can be at

most 26 other robots in the most densely packed scenario. By distributing the computation

of barrier certificates, each agent only needs to solve a QP with 2 decision variables and at
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Swarm
Size

N

Centralized
Certifi-

cates Tc (ms)

Decentralized
Certificates

Td/N (ms)
10 5.6 3.2
40 11.6 3.5

100 78.0 5.4

Table 3.3: Computation time of barrier certificates for each iteration.

most 26 linear constraints. Therefore, the certificates can be computed in real-time on the

Robotarium, i.e., an update frequency in excess of 30 Hz.

The computation time of safety barrier certificates for each iteration is shown in Table

3.3. Note that the decentralized barrier certificates here are simulated on a single central

computer.2 Thus, the total computation time Td is divided by N to characterize the decen-

tralized and fully parallel implementation. As Table 3.3 shows, decentralized safety barrier

certificates can handle 100 GRITSBots with an update frequency of 185Hz and therefore

scale to large numbers of robots without compromising update rates.

With the embedded safety mechanism provided with the barrier certificates, the Robo-

tarium supports remote-access multi-robot research without posing risks to physical equip-

ment. The barrier certificates are adopted by multiple research groups for experiments

conducted on the Robotarium [75, 23, 76]. The transition from theoretical development in

multi-robot systems to experimental implementations is accelerated significantly with the

help of the Robotarium.

2Barrier certificates were computed on an Intel I7 4790 3.6 GHz with 16 GB of memory.
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CHAPTER 4

BARRIER CERTIFICATES FOR TEAMS OF QUADROTORS

Teams of quadrotors are widely used aerial robotic platforms. Due to the under-actuated

and intrinsically unstable nature of unmanned aerial vehicles, it is often challenging to

generate safe trajectories for arbitrary tasks, such as aerial delivery, convoy protection, and

cooperative environment surveillance, see [77, 78, 79] and the references therein. The

objective of this chapter is to develop safety certificates for efficient or even aggressive

maneuvers in teams of quadrotors based on their nonlinear dynamics [80].

4.1 Quadrotor Dynamics and Differential Flatness

The quadrotor is a well-modelled dynamical system with forces and torques generated by

four propellers and gravity. Z−Y −X Euler angles conventions are adopted to define the

roll (φ ), pitch (θ ), and yaw (ψ) angles as illustrated in Fig. 4.1.

Figure 4.1: Quadrotor coordinate frames. The subscripts w denotes the world frame Fw, b
for the quadrotor body frame Fb, and c for an intermediate frame Fc after yaw angle rota-
tion. ω1 to ω4 are the angular velocities of the four propellers. The palm-sized quadrotor
illustrated is a Crazyflie 2.0 [81] used in the experiment section.

The quadrotor dynamics has been shown to be differentially flat in [6, 82], i.e., the states

and inputs of the system can be written in terms of algebraic functions of appropriately
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chosen flat outputs and their derivatives. As shown in [82], the flat output for quadrotor can

be chosen as σ = [x,y,z,ψ]T . The full state ξ = [x,y,z,vx,vy,vz,ψ,θ ,φ , p,q,r]T and input

µ = [ fz,τx,τy,τz]
T can be represented algebraically using the following functions

ξ = β (σ , σ̇ , σ̈ ,
...
σ ), µ = γ(σ , σ̇ , σ̈ ,

...
σ ,

....
σ ),

where we refer to [82] for a derivation and formula of the endogenous transformation (β ,γ).

The flight trajectory can be planned in a greatly simplified flat output space with the

differential flatness property. For simplicity of planning, the yaw angle is set to ψ(t) = 0.

Note that the yaw angle control is useful when an onboard camera is present, in which case

the differential flatness based planning method still applies. Let r = σ1:3 = [x,y,z]T ∈ R3,

a virtual control input v ∈R3 can be created for the forth order integrator dynamics
....r = v,

which can be equivalently written as state space form

q̇ =

F∈R4×4︷ ︸︸ ︷

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


⊗I3×3 ·q

︸ ︷︷ ︸
f (q)

+

G∈R4︷︸︸︷

0

0

0

1


⊗I3×3

︸ ︷︷ ︸
g(q)

·v, (4.1)

where q = [rT , ṙT , r̈T ,
...r T ]T ∈R12,⊗ is Kronecker product. Note that since collision avoid-

ance requires simultaneous response of three degrees of freedom, the trajectory planning

problem here can not be simplified by decoupling three independent degrees of freedom,

as was done in [6, 5].

With the differential flatness property, trajectory planning for quadrotors can be simpli-

fied as spline interpolations. “keyframes” representing the desired waypoints can be placed

in the 3D space using existing higher level planning algorithms, e.g., [83, 84]. An optimal
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(minimal-snap) trajectory can then be generated with smooth splines [6].

The optimal flight trajectory is generated segment by segment. Let the starting and

ending “keyframe” of a segment of trajectory be denoted as [r̄0, ˙̄r0, ¨̄r0,
...
r̄ 0]

T ∈ R4×3 and

[r̄1, ˙̄r1, ¨̄r1,
...
r̄ 1]

T ∈ R4×3. The actual flight trajectory is formulated as a 3D spline.

r(t) =


∑

N
i=0 α1iBi(t)

∑
N
i=0 α2iBi(t)

∑
N
i=0 α3iBi(t)

 , (4.2)

where αi j and Bi(t) are the coefficients and polynomial basis. A convex optimization prob-

lem can be formulated as

min
αi j

∫ t1

t0

∥∥∥∥d4r(t)
dt4

∥∥∥∥2

dt

s.t.
dkr(t)

dtk

∣∣∣∣
t=t0

=
dkr̄0

dtk , k = 0,1,2,3

dkr(t)
dtk

∣∣∣∣
t=t1

=
dkr̄1

dtk , k = 0,1,2,3.

An example of the flight trajectory generation method is provided in Fig. 4.2. As the

“keyframes” are placed in the space, smooth splines can be generated to execute these

desired maneuvers.

In addition to planning in the free space, spline interpolations can deal with safety

corridor constraints. For example, let the safety corridor constraints between “keyframes”

be defined as

d(t) = ‖(r(t)− r̄0)− ((r(t)− r̄0) ·n)n‖∞ ≤ δ ,

where n = r̄1−r̄0
‖r̄1−r̄0‖ . When a safety corridor is added between two “keyframes”, we can sam-

ple multiple points along the corridor and add them as linear constraints. To accommodate
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Figure 4.2: Flight trajectory generated with splines

these additional safety constraints, the order of the polynomial spline is increased.

min
αi j

∫ t1

t0

∥∥∥∥d4r(t)
dt4

∥∥∥∥2

dt

s.t.
dkr(t)

dtk

∣∣∣∣
t=t0

=
dkr̄0

dtk , k = 0,1,2,3

dkr(t)
dtk

∣∣∣∣
t=t1

=
dkr̄1

dtk , k = 0,1,2,3

d(tm)≤ δ , tm = t0 +
m
N
(t1− t0),m = 1,2, ...,N−1

Considering the same planning problem with Fig. 4.2, a safety corridor is added be-

tween two “keyframes”. The resulting flight trajectory is shown in Fig. 4.3. Compared

with Fig. 4.2, the flight trajectory is constrained within the safety corridor.
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Figure 4.3: Flight trajectory generated with splines and safety corridor constraints, where
the meshed tube is the safety corridor.

4.2 Exponential Control Barrier Functions

With the simplified forth-order integrator model for quadrotors, Control Barrier Functions

(CBF) can be used to ensure collision-free flight maneuvers. Let the safe set be defined as

C0 = {q ∈ R12 | h(q)≥ 0}, (4.3)

where h : R12→ R is a smooth function.

Because h(q) only contains the position variable r, we denote y0(r) = h(q). The relative

degree of y0(r) is 4, which means that y(4)0 (r) = L4
f h(q)+LgL3

f h(q)v. With the high relative

degree of y(r), CBFs in [16, 62] can not be directly applied. A variation of the CBF,

i.e., “Exponential Control Barrier Function” (ECBF) [18], can however ensure the forward

invariance of C0.

Definition 3.2.2: Given the dynamical system (4.1) and a set C0 defined in (4.3), the

smooth function h : C0 → R with relative degree of 4 is an Exponential Control Barrier
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Function (ECBF) if there exists a vector K ∈ R1×4 such that ∀x ∈ C0,

sup
u∈U

[L4
f h(q)+LgL3

f h(q)v+Kη ]≥ 0, (4.4)

and h(q(t))≥CeF−GKη(q0)≥ 0 when h(q0)≥ 0, where η = [h(q),L f h(q),L2
f h(q),L3

f h(q)]T ,

C = [1,0,0,0]. K can be obtained by placing the poles of the closed-loop matrix (F−GK)

at p =−[p1, p2, ..., p4]
T , where pi > 0 for i = 1,2,3,4. With these pole locations, a family

of outputs yi, i = 1,2,3,4 can be defined as

yi = (
d
dt

+ p1)◦ (
d
dt

+ p2)◦ ...◦ (
d
dt

+ pi)◦h(q),

with y0 = h(q), and the associated family of super level sets

Ci = {q ∈ R12 | yi(q)≥ 0}. (4.5)

Theorem 4.2.1. Given a safe set C0 in (4.3) and associated ECBF h(q) : C0 → R, with

initially q0 ∈ Ci, i = 0,1,2,3 for system (4.1), any Lipschitz continuous controller v(q) ∈

Kv(q) renders C0 forward invariant, where

Kv(q) = {v ∈V | L4
f h(q)+LgL3

f h(q)v+Kvη ≥ 0},

and η = [h(q),L f h(q),L2
f h(q),L3

f h(q)]T .

We refer to [18] for the proof of general cases of this theorem.

4.3 Safety Barrier Certificates for Teams of Quadrotors

With the differential flatness property of quadrotor dynamics and ECBF for a single quadro-

tor, we can construct Safety Barrier Certificates for teams of quadrotors.
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Safety Region Modelled With Super-ellipsoids

Consider a team of m quadrotors (M = {1,2, . . . ,m}), each quadrotor is modelled as

....r i = vi, i ∈M (4.6)

where ri = [xi,yi,zi]
T is the center of mass of quadrotor i. The full state of quadrotor

i is represented by qi = [rT
i , ṙ

T
i , r̈

T
i ,

...r T
i ]

T ∈ R12. Let r = [rT
1 ,r

T
2 , ...,r

T
m]

T ∈ R3m and v =

[vT
1 ,v

T
2 , ...,v

T
m]

T ∈ R3m denote the aggregate position and virtual control. Each quadrotor is

encapsulated with a “rectangle shape” super-ellipsoid1,

Ci j = {(qi,q j) | hi j(qi,q j)≥ 0}, (4.7)

hi j(qi,q j) = (xi− x j)
4 +(yi− y j)

4 +(
zi− z j

c
)4−D4

s ,

where Ds is the safety distance, c is the scaling factor along the Z axis caused by air flow

disturbance.

Since the pairwise safe set Ci j is defined in terms of position variables ri,r j, the ECBF

candidate hi j(qi,q j) has a relative degree of 4. To ensure the forward invariance of Ci j,

virtual controls of quadrotor i and j need to satisfy

....
h i j +K · [hi j, ḣi j, ḧi j,

...
h i j]

T ≥ 0, (4.8)

where
....
h i j is affine in vi,v j. Thus, it can be rearranged into a linear constraint on the virtual

control when qi,q j are given, i.e., Ai j(qi,q j) ·v≤ bi j(qi,q j). The Safety Barrier Certificates

are then formed by assembling all the pairwise safety barrier constraints

Ksafe = {v ∈ R3m | Ai j(qi,q j) · v≤ bi j(qi,q j),∀i < j, i, j ∈M }. (4.9)

1A super-ellipsoid is a solid geometry generally defined with the implicit function [( x
a )

r +( y
b )

r]
n
r +( z

c )
n ≤

1 with r,n ∈ R+[85]. r = n = 4 is selected to approximate a “rectangle shape” here.
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As long as the virtual control v satisfies the Safety Barrier Certificates Ksa f e and corre-

sponding initial conditions, the team is guaranteed to be safe by Theorem 4.2.1.

Modifying the Nomimal Trajectory with Safety Barrier Certificates

It is often difficult to generate provably collision-free trajectories when planning the nomi-

nal trajectory for teams of quadrotors. Instead, we can first plan the flight trajectory without

considering collisions, and then modify it using Safety Barrier Certificates in a minimally

invasive way to avoid collisions. Here we consider the case when a nominal trajectory

r̂(t) = [r̂T
1 (t), r̂

T
2 (t), ..., r̂

T
m(t)] ∈ C4 is provided. This smooth reference trajectory r̂i(t) is

then tracked by a simulated integrator model using a pole placement controller with a sim-

ulated time step of 0.02s (simulates the 50Hz flight controller),

v̂i =
....r i−K · [r̂i ˙̂ri ¨̂ri

...
r̂ i]

T , (4.10)

where K is picked to be the same as used for ECBFs in (4.8) to trade-off tracking perfor-

mance and safety enforcement.

Similar to Section 3.2, a QP is used to minimize the difference between the actual and

nominal control,

v∗ = argmin
v

J(v) =
N

∑
i=1
‖vi− v̂i‖2

s.t. Ai j(qi,q j)v≤ bi j(qi,q j), ∀i < j,

‖vi‖∞ ≤ αi, ∀i ∈M ,

(4.11)

It can be observed that the actual controller vi will be the same as v̂i, if it is safe. The

controller will only be rectified if it violates the Certificates, i.e., if it leads to collisions.

The dynamics of the simulated forth-order integrator system is integrated forward using

forward Euler method. According to [67], the controller vi generated by the QP (6.13) will

be Lipschitz continuous as well. Thus, the rectified collision-free trajectory r(t) will still
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be four times differentiable. Differential flatness property of quadrotors can still be used to

execute the rectified collision-free trajectory r(t).

4.4 Feasibility of the Certificates

The safety barrier certificates consist of multiple inequality constraints. The following

result provides theoretical guarantees for feasibility.

Theorem 4.4.1. Given a team of quadrotors indexed by M with dynamics given in (4.6),

the aggregate admissible safe control space Ksafe in (4.9) allowed by Safety Barrier Cer-

tificates is guaranteed to be non-empty.

Proof. See Appendix.

Figure 4.4: Visualization of Ksafe as the intersection of multiple half spaces

The idea of control sharing barrier function used in the proof is similar to control-

sharing and merging control Lyapunov functions introduced in [35].
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4.4.1 Virtual Vehicle Parameterization

Collision avoidance maneuvers of quadrotors might sometimes lead to significant devia-

tions from reference trajectories. After the collision hazard disappears, excessive control

effort might be required for the quadrotors to return to the reference point along the nom-

inal trajectory. To address this issue, a virtual vehicle parameterization method similar to

[86] is developed.

The basic idea of virtual vehicle paramterization is to slow down or speed up the virtual

vehicle (reference point r̂(t) on the nominal trajectory) as the tracking error er = ‖r− r̂‖

increases or decreases. In this particular application, we use the following virtual time

variable to parameterize the reference point on the nominal trajectory

ṡ = e−ks‖er‖2
, (4.12)

where ks is the virtual parameterization gain. Instead of r̂(t), r̂(s(t)) is fed into the Safety

Barrier Certificates rectifier shown in Fig. 4.7. Intuitively, the virtual vehicle will slow

down (ṡ < 1) when the tracking error is large; it will travel exactly at the desire speed

(ṡ = 1) when the tracking error is zero. This parameterization mechanism is intended to

reduce the amount of control effort when the quadrotor has to deviate away from the virtual

vehicle to avoid collisions.

To demonstrate the effectiveness of virtual vehicle parameterization, a simulation of

two quadrotors flying pass each other is presented. The trajectories of two quadrotors are

illustrated in Fig. 4.5.

In this example, the collision avoidance manuever requires a maximum pitch angle of

70◦ and a maximum thrust of 2.8 times hovering thrust without parameterization (ks = 0)

as shown in Fig. 4.6. In contrast, a maximum pitch angle of 25◦ and a maximum thrust of

1.2 times hovering thrust are needed with parameterization (ks = 100). In both cases, the

desired task is accomplished within 6s.
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Figure 4.5: Trajectories of two quadrotors flying pass each other plotted in X-Y plane.
Control efforts for performing this task are illustrated in Fig. 4.6.

As proved in section 4.4, the QP in (4.11) will always generate a feasible solution. How-

ever, the required control effort to avoid collisions might be excessive. In this circumstance,

virtual vehicle parameterization method can be used to reduces instantaneous control ef-

forts. By increasing the virtual parameterization gain ks significantly, the quadrotors will

be granted considerably more time to perform collision avoidance manuevers. Thus, the

parameterization mechanism will generate a feasible trajectory that satisfies given actuator

constraints.

4.4.2 Overview of Safe Trajectory Generation Strategy

An overview of the safe trajectory generation strategy is summarized in Fig. 4.7. A smooth

reference trajectory r̂(t) ∈C4 is first fed into the safety barrier certificates rectifier, where

the QP controller (6.13) is used to enforce collision-free flight maneuvers. The rectified

smooth safe trajectory r(t) ∈C4 is then transformed into quadrotor states and controls us-

ing the differential flatness property. The full states and controls are checked to ensure

that actuator limits are not violated. Otherwise, the reference trajectory is parameterized

r̂(s(t)) ∈C4 and fed into the safety barrier certificates rectifier again. This process can be

repeated until the virtual vehicle parameterization strategy yields appropriate flight trajec-
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Figure 4.6: Comparisons of control efforts for the quadrotor using (ks = 100) or without
using (ks = 0) virtual vehicle parameterization.
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Figure 4.7: Flowchart of safe trajectory generation strategy.

tory that respects both safety and actuator constraints. In the end, the generated feasible

safe trajectory is sent to execute on the team of quadrotors.

4.5 Experimental Implementations

The Safety Barrier Certificates are implemented on a team of five palm-sized quadrotors

(Crazyflie 2.0). All communication channels between different devices and control pro-

grams are coordinated by a ROS server. The real-time positions and Euler angles of quadro-

tors are tracked by the Optitrack motion capture system with an update rate of 50Hz. The
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50Hz quadrotor motion controller is developed based on the ROS driver for Crazyflie 2.0

built by ACTLab at USC [87]. To ensure stable trajectory tracking behavior, Euler angles

and Euler angle rates generated with the differential flatness property are sent to quadrotors

as control commands.

Figure 4.8: Long exposure photo of the experiment. The blue lights illustrate trajectories
of the quadrotors. The video of this experiment is available online [88].

The overall quadrotor control diagram is shown in Fig. 4.9.
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Figure 4.9: Quadrotor control system diagram
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4.5.1 Showcase: Flying Through a Static Formation

In the first experiment, one of the quadrotor (Q5) is commanded to fly through a static

formation consisting of four quadrotors (Q1−Q4) as shown in Fig. 4.10.

Figure 4.10: Snapshot from a experiment of quad Q5 flying through a static formation
consisting of four quads Q1−Q4. The video of this experiment is available online [88].

Quadrotors (Q1−Q4) are designed to hover at four places with reference trajectories

given as

r̂1(t) =


0.25

0

−0.8

 , r̂2(t) =


0

0.25

−0.8

 ,

r̂3(t) =


−0.25

0

−0.8

 , r̂4(t) =


0

−0.25

−0.8

 .

Another quadrotor (Q5) is designed to go from p0 = [0.6,−0.6,−0.8]T to p1 = [−0.6,0.6,−0.8]T .

The nominal trajectory can be generated as

r̂5(t) = BezierInterp(p0, p1),
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where the BezierInterp function stands for the Bezier curve interpolation algorithm between

two waypoints.

The safety distance between quadrotors is specified as Ds = 25cm to account for the

tracking frames and controller tracking errors. Intuitively, quadrotors will collide with

each other if nominal trajectories are directly executed. During the experiment, the Safety

Barrier Certificates are applied to modify the nominal trajectories in a minimally invasive

way to avoid collisions. As demonstrated in Fig. 4.11, Q5 successfully navigated through

the static formation of four quadrotors within 3.4s.
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Figure 4.11: Experimental data of the team of quadrotors plotted in the X-Y plane. The tail
of each quadrotor illustrates its trajectory in the past 0.8s.
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4.5.2 Showcase: Flying Through a Spinning Formation

Similar to the previous experiment, the quadrotor Q5 is commanded to fly through a spin-

ning formation as illustrated in Fig. 4.12.

Figure 4.12: Snapshot from a experiment of quad Q5 flying through a spinning formation
consisting of four quads Q1−Q4. The video of this experiment is available online [88].

The reference trajectories of quadrotors are designed as

r̂1(t) =


0.45sin(π

2 t− π

2 )

0.45cos(π

2 t− π

2 )

−0.8

 , r̂2(t) =


0.45cos(π

2 t)

0.45sin(π

2 t)

−0.8

 ,

r̂3(t) =


0.45cos(π

2 t + π

2 )

0.45sin(π

2 t + π

2 )

−0.8

 , r̂4(t) =


0.45cos(π

2 t +π)

0.45sin(π

2 t +π)

−0.8

 ,

r̂5(t) = BezierInterp



−0.9

−0.9

−0.8

 ,


0.9

0.9

−0.8


 .

As shown in Fig. 4.13, Q5 successfully navigated through the spinning formation with

minimal impact on the other four quadrotors by applying the Safety Barrier Certificates.
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Figure 4.13: Experimental data of the team of quadrotors plotted in the X-Y plane. The tail
of each quadrotor illustrates its trajectory in the past 0.6s.

4.5.3 Showcase: Online Formation Adaptation

The team of quadrotors are commanded to change different formations on the fly in this

experiment. Instead of using a precomputed formation switching library, the avoidance

behaviors are generated online using the safety barrier certificates.

The reference trajectories of the quadrotors are designed intentionally to make the

quadrotors to fly directly over each other. With the following trajectory design, the team

will always fly in a close formation. Meanwhile, the quadrotor 2 and 4 will directly fly over
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the quadrotor 1 and 3 with a close distance of 0.3m if no avoidance measures are taken.

r̂1(t) = r̂5(t)+ BezierInterp




0.4

0

−0.15

 ,


0

0.4

−0.15


 ,

r̂2(t) = r̂5(t)+ BezierInterp




0

0.4

0.15

 ,


0.4

0

0.15


 ,

r̂3(t) = r̂5(t)+ BezierInterp



−0.4

0

−0.15

 ,


0

−0.4

−0.15


 ,

r̂4(t) = r̂5(t)+ BezierInterp




0

−0.4

0.15

 ,

−0.4

0

0.15


 ,

r̂5(t) =




0.8cos(π

3 t)

0.8sin(π

3 t)

0.3sin(π

2 t)−1.0


 ,

This set of reference trajectories was executed several times without the barrier cer-

tificates. Each time, the quadrotor flying below crashed due to the strong down-wash

wind disturbance. When the barrier certificates were activated, the actual trajectories of the

quadrotors during the experiment are visualized in Fig. 4.14. Since the super-ellipsoidal

safe region took care of both the collision and down-wash avoidance requirements, the

team successfully changed formations safely with the barrier certificates.

Experimental results provided in this section demonstrate that the Safety Barrier Certifi-

cates can save flight planners the hassle of considering collision avoidance when designing

the higher level multi-robot coordination algorithm. This strategy can be easily used in
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conjunction with other complicated motion planning strategies, e.g., optimal control algo-

rithms, temporal/spatial assignment algorithms, to provide desired safety guarantees. The

minimally invasive enforcement of the Safety Barrier Certificates ensures that desired con-

troller will not be rectified unless truly necessary.

In this chapter, a flight trajectory modification strategy was presented to ensure collision-

free manuevers for teams of differential flatness based quadrotors. The nominal flight tra-

jectories, which are generated with existing control and planning algorithms, were modified

in a minimally invasive way using the Safety Barrier Certificates to avoid collisions. The

effectiveness of the proposed strategy was validated with experimental implementations of

the Safety Barrier Certificates on a team of five quadrotors.
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Figure 4.14: A team of five quadrotors adapting to different formations on the fly. Each
quadrotor is visualized as a super-ellipsoid centered at the quadrotor’s center of mass. The
tail of each quadrotor represents its flight trajectory in the past 2s. The team successfully
executed collisoin-free trajectories to change formations without prior safety planning. A
video of this experiment is available online [74].
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CHAPTER 5

BARRIER CERTIFICATES FOR MULTI-OBJECTIVE COMPOSITIONS

Teams of robots often need to simultaneously satisfy multiple objectives, such as area cov-

erage, object tracking, collision avoidance, connectivity maintenance and battery power

recharging [89, 90, 91]. Safety barrier certificates were synthesized in previous chapters

to ensure collision free motions in teams of robots. But sometimes other objectives need

to be achieved together with the safety constraint. In this section, we will explore how to

systematically compose multiple barriers representing multiple non-negotiable objectives,

and apply it to teams of mobile robots.

5.1 Piecewise Smooth Barrier Functions

To encode more objectives, we will introduce methods to compose barrier functions with

AND and OR logical operators. After the composition, these originally smooth barrier

functions might become piecewise smooth. Thus, we will first state the result for Piecewise

Barrier Functions (PBF) [19].

To ensure easy logical compositions, we redefine the safe set C ⊆D as

C = {x ∈ Rn | B(x)> 0}, C C = {x ∈ Rn | B(x) = 0}, (5.1)

where the PCr−function [92] B : D → R+
0 is positive in C and zero outside.

Definition 2.3: Given a dynamical system defined in (3.1) and a set C ⊆ D defined in

(5.1), the PCr−function B : D → R+
0 is a Piecewise Barrier Function (PBF) if there exists

a class K function α such that

sup
u∈U

[−B′(x;− f (x)−g(x)u)+α(B(x))]≥ 0, (5.2)
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for all x ∈ C .

Note that B′(x;− f (x)−g(x)u) is the B-derivative of B(x) at x in the direction (− f (x)−

g(x)u) [93]. When B(x) is smooth, we have −B′(x;− f (x)−g(x)u) = L f B(x)+LgB(x)u.

With the definition of PBFs, the admissible control space for the control system is

K(x) = {u ∈U | −B′(x;− f (x)−g(x)u)+α(B(x))≥ 0} (5.3)

Theorem 5.1.1. Given a set C ⊆D defined by (5.1) with the associated PBF B : D→R+
0 ,

any Lipschitz continuous controller u(x) ∈ K(x) for the dynamical system (3.1) render C

forward invariant, i.e., x(t) ∈ C ,∀t ≥ t0, if x(t0) ∈ C .

Proof. See Appendix.

To sum up, we can get set invariance properties similar to [16, 62] using PBFs.

5.2 Boolean Logical Composition of Barriers

Let us define Ci ⊆D , i = 1,2, similar to (5.1),

Ci = {x ∈ Rn | Bi(x)> 0}, C C
i = {x ∈ Rn | Bi(x) = 0}. (5.4)

Let B∪ = B1 +B2 and B∩ = B1B2,

E = {x ∈ Rn | B∪(x)> 0}, F = {x ∈ Rn | B∩(x)> 0}. (5.5)

Lemma 5.2.1. Given Ci, i = 1,2 defined in (5.4), E and F defined in (5.5), E = C1∪C2

and F = C1∩C2.
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Proof. Pick any elements x1 ∈ E , x2 ∈F , we have

B∪(x1) = B1(x1)+B2(x1)> 0, (5.6)

B∩(x2) = B1(x2)B2(x2)> 0. (5.7)

From the definition (5.4), B1(x) and B2(x) are always non-negative. Thus, (5.6) implies

B1(x1) > 0 or B2(x1) > 0, i.e. x1 ∈ C1∪C2. (5.7) implies B1(x2) > 0 and B2(x2) > 0, i.e.

x2 ∈ C1∩C2. This means E ⊆ C1∪C2 and F ⊆ C1∩C2.

Conversely, we can show that C1 ∪C2 ⊆ E and C1 ∩C2 ⊆ F . This completes the

proof.

Next, we can compose two objectives with AND or OR logical operators.

Theorem 5.2.2. Given Ci, i = 1,2, defined in (5.4), E defined in (5.5), and a valid PBF B∪

on E , then any Lipschitz continuous controller u(x)∈K∪(x) for the dynamical system (3.1)

render C1∪C2 forward invariant, where

K∪(x) = {u ∈U | −B′∪(x;− f (x)−g(x)u)+α(B∪(x))≥ 0}.

Proof. B∪ is the summation of two PCr−functions, thus still a PCr−function [92]. The B-

derivative for B∪ is well-defined at ∀x∈ E . Since B1(x) and B2(x) are always non-negative,

B∪ is also non-negative, i.e., B∪ > 0 in E , B∪ = 0 outside of E .

When u(x) ∈ K∪(x), we have ∂−B∪x(t) ≥ −α(B∪x). Apply Theorem 5.1.1, E is for-

ward invariant. Use Lemma 5.2.1, we can get C1∪C2 is also forward invariant.

Theorem 5.2.3. Given Ci, i = 1,2, defined in (5.4), F defined in (5.5), and a valid PBF

B∩ on F , then any Lipschitz continuous controller u(x) ∈ K∩(x) for the dynamical system

(3.1) render C1∩C2 forward invariant, where

K∩(x) = {u ∈U | −B′∩(x;− f (x)−g(x)u)+α(B∩(x))≥ 0}.
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The proof of this theorem is similar to Theorem 5.2.2.

Now we have the conditions to check whether the objectives are composable using the

AND or OR logical operators. These two logical operators provides easy ways to compose

multiple objectives as shown in Fig. 5.1. Next, the compositional barrier functions will be

applied to safety and connectivity maintenance for teams of mobile robots.

Figure 5.1: Barrier compositions using AND and OR logical operators.

5.3 Barrier Compositions for Safe and Connected Team of Robots

Similar to Section 3.2, we consider a team of N mobile robots modeled with double inte-

grator dynamics. Two robots i and j need to always keep a safety distance Ds away from

each other to avoid collision, meanwhile stay within a connectivity distance Dc of each

other to communicate.

Considering the worst case scenario that the maximum braking force is applied to avoid

collisions, a pairwise safety constraint between robots i and j can be written as

hi j(x) = 2
√

α(‖∆pi j‖−Ds)+
∆pT

i j

‖∆pi j‖
∆vi j > 0.

The detailed derivation of this pairwise safety constraint can be found in [66]. A pairwise
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safe set Ci j and a PBF candidate Bi j(x) are defined as

Ci j = {x | Bi j(x)> 0}, Bi j(x) = max{hi j(x),0}. (5.8)

To guarantee that all pairwise collisions are prevented, the safe set C for the team of

mobile robots can be written as the intersection of all pairwise safe sets.

C =
⋂

j∈M
j>i

Ci j. (5.9)

Let G = (V,E) be the required connectivity graph, where V = {1,2, ...,N} is the set of

N mobile robots, E is the required edge set. The presence of a required edge (i, j) indicates

that robots i and j should always stay within a connectivity distance of Dc.

Similarly, a pairwise connectivity constraint can be developed by considering the max-

imum acceleration to avoid breaking connectivity, i.e.,

h̄i j(x) = 2
√

α(Dc−‖∆pi j‖)−
∆pT

i j

‖∆pi j‖
∆vi j > 0.

The corresponding pairwise connectivity set C̄i j and PBF candidate are

C̄i j = {x | B̄i j(x)> 0}, B̄i j(x) = max{h̄i j(x),0}. (5.10)

In order to maintain all required edges, the connectivity set C̄ for the team of mobile

robots can be written as

C̄ =
⋂

(i, j)∈E

C̄i j. (5.11)

In order for the team of mobile robots to stay safe and connected, the ensemble state x

shall stay within

T =
⋂

i, j∈M
j>i

Ci j
⋂

(i, j)∈E

C̄i j, (5.12)
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for all time t ≥ 0. Since T is the intersection of multiple sets, the compositional barrier

function can be used to ensure the forward invariance of T . The composite PBF for safety

and connectivity maintenance is

B(x) = ∏
i, j∈M

j>i

Bi j(x) ∏
(i, j)∈E

B̄i j(x). (5.13)

Before using this composite PBF, we need to check whether B(x) is a valid PBF, which is

ensured by the following lemma.

Lemma 5.3.1. The composite barrier function candidate B(x) defined in (5.13) is a valid

PBF, i.e.,

sup
u∈U

[−B′(x;− f (x)−g(x)u)+α(B(x))]≥ 0, (5.14)

for all x ∈T .

Proof. See Appendix.

Lemma 5.3.1 also implies that the admissible control space,

KT (x) = {u ∈U | L f B(x)+LgB(x)u+α(B(x))≥ 0}, (5.15)

is always non-empty. With this result, we will present the theorem for safety and connec-

tivity maintenance.

Theorem 5.3.2. Given any required connectivity graph G = (V,E), a PBF B(x) defined

in (5.13), any Lipschitz continuous controller u(x) ∈ KT (x) for the dynamical system (3.2)

guarantees that the team of mobile robots are safe and connected.

Proof. Lemma 5.3.1 ensures that B(x) is a valid PBF defined for the set T in (5.12). Thus

when u(x) ∈ KT (x), T is forward invariant from Theorem 5.1.1, i.e., B(x) > 0,∀t > 0.

From definitions (5.8), (5.10), and (5.13), all PBFs are constructed to be non-negative.
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Therefore,

Bi j > 0, ∀i, j ∈M , j > i, ∀t > 0,

B̄i j > 0, ∀(i, j) ∈ E, ∀t > 0.

Both C and C̄ are forward invariant. C encodes that all agents do not collide with each

other, while C̄ encodes that all connectivity requirements specified by the graph G are

satisfied, i.e., the team of mobile robots are safe and connected.

Next, an optimization based controller will be presented to inject higher level goals,

e.g., visiting waypoints, form certain shapes, and covering area, into the controller design.

This is achieved by running the following QP-based controller,

u∗ = argmin
u

J(u) =
N

∑
i=1
‖ui− ûi‖2

s.t. L f B(x)+LgB(x)u+α(B(x))≥ 0,

‖ui‖∞ ≤ αi, ∀i ∈M .

(5.16)

which is similar to what we did in Section 3.2.

5.3.1 Maintaining Dynamical Connectivity Graphs

Due to the dynamically changing environment and robot states, it would sometimes be

favourable to allow the robots to switch between different connectivity graphs [94]. Mo-

tivated by the need of maintaining dynamically changing connectivity graphs, composite

safety and connectivity barrier certificates are proposed to ensure safety and dynamical

connectivity of the team of mobile robots.

Let G̃ = {G1,G2, ...,GM} denote the set of all allowable connectivity graphs, where

Gi = (V,Ei), i ∈P , P = {1,2, ...,M} is the index set of G̃ . To stay connected, the team of

mobile robots needs to satisfy at least one of these allowable connectivity graphs. The set

67



that encodes the dynamical connectivity graph requirement is

C̃ =
⋃

k∈P

⋂
(i, j)∈Ek

C̄i j (5.17)

Definition 4.3: Given a set of allowable connectivity graphs G̃ , the team of N mobile

robots with dynamics given in (3.2) is dynamically connected, if the ensemble state x stays

in the set C̃ for all time t ≥ 0.

In order for the team of mobile robots to stay both safe and dynamically connected, the

ensemble state x shall stay in

T̃ =

 ⋂
i, j∈M

j>i

Ci j


 ⋃

k∈P

⋂
(i, j)∈Ek

C̄i j

 , (5.18)

for all time t ≥ 0. Safety and dynamical connectivity guarantees similar to Theorem 5.3.2

can be achieved by using a composite PBF introduced in Section 5.2,

B̃(x) =

 ∏
i, j∈M

j>i

Bi j(x)

( ∑
k∈P

∏
(i, j)∈Ek

B̄i j(x)

)
. (5.19)

It can be shown that B̃(x) is a valid PBF on T̃ using the same techniques like Lemma 5.3.1,

i.e., the admissible control space

KT̃ (x) = {u ∈U | L f B̃(x)+LgB̃(x)u+α(B̃(x))≥ 0}, (5.20)

is always non-empty.

Theorem 5.3.3. Given a set of allowable connectivity graphs G̃ = {G1,G2, ...,GM}, a PBF

B̃(x) defined in (5.19), any Lipschitz continuous controller u(x)∈KT̃ (x) for the dynamical

system (3.2) guarantees that the team of mobile robots are safe and dynamically connected.
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The proof of this theorem is similar to Lemma 5.3.1, Theorem 5.2.2, and Theorem 5.3.2.

5.4 Experimental Implementation

The composite safety and connectivity barrier certificates were tested on a team of four

Khepera robots. The real-time positions of the robots are tracked by the Optitrack Motion

Capture System. The mutli-robot communications and controls are executed on the Robot

Operating System (ROS).

The nominal controller was designed as a waypoint controller, which used a go-to-

goal behavior to visit the specified waypoints without considering safety and connectivity.

As illustrated in Fig. 5.2, each robot needs to visit three waypoints sequencially. Those

waypoints are intentionally designed to make robots collide at multiple places.

−1.0 0.0 0.8

−1

0

1

R1 R2 R3 R4

Figure 5.2: Planned waypoints for four robot agents. Ri stands for robot i, where i =
1,2,3,4. The lines represent the nominal trajectories of the robots if they execute the
nominal waypoint controller.
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5.4.1 Composite Safety Barrier Certificates

In the first experiment, the composite safety barrier certificates were wrapped around the

nominal waypoint controller using the QP-based strategy (5.16). The composite PBF was

formulated as

B = B12B13B14B23B24B34,

so that all possible pairwise collisions are avoided. No connectivity constraints were con-

sidered in this experiment.

As shown in Fig. 5.3, all the inter-robot distances are always larger than the safety

distance Ds, i.e., no collision happened during the experiment. Fig. 5.5 are snapshots taken

by an overhead camera and plotted robot trajectories. All robots successfully visited the

specified waypoints without colliding into each other. Note that without the connectivity

constraints, the mobile robot team sometimes got disconnected during the experiment, e.g.,

the team split into two parts in 5.5a.
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Figure 5.3: Evolution of the inter-robot distances during the experiment. Di j represents
the distance between robot i and robot j. Ds = 0.15m and Dc = 0.6 are the safety and
connectivity distance. Di j > Ds implies that robots i and j did not collide.
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Figure 5.4: Evolution of the inter-robot distances during the experiment. Di j represents
the distance between robot i and robot j. Ds = 0.15m and Dc = 0.6 are the safety and
connectivity distance. Di j > Ds implies that robots i and j do not collide. Di j < Dc implies
that robots i and j are in connectivity range.

5.4.2 Composite Safety and Connectivity Barrier Certificates

During the second experiment, the composite safety and connectivity barrier certificates

were wrapped around the waypoint controller using the QP-based strategy (5.16). The

composite PBF is designed as

B = B12B13B14B23B24B34B̄23(B̄12 + B̄13)(B̄24 + B̄34),

which encodes that: 1) there should be no inter-robot collisions; 2) robot 2 and 3 should

always be connected; 3) robot 1 should be connected to robot 2 or 3; 4) robot 4 should be

connected to robot 2 or 3.

As shown in Fig. 5.4, the inter-robot distances were always larger than Ds, i.e., the team

of mobile robots did not collide with each other during the experiment. At the same time,

all the connectivity constraints were satisfied, i.e., 1) D23 was always smaller than Dc; 2)

min{D12,D13} was always smaller than Dc; 2) min{D24,D34} was always smaller than Dc.
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The team of mobile robots satisfied all the safety and connectivity requirements specified

by the safety and connectivity barrier certificates.

The snapshots during the experiment in Fig. 5.6 illustrated that the robots visited all

specified waypoints except the last one. This is because the last set of waypoints violated

the connectivity constraints, i.e., robot 1 can’t reach its waypoint without breaking its con-

nectivity to robot 2 and 3. This experiment also indicates that not all higher level objectives

are compatible with the safety and connectivity constraints.

In this section, a systematic way to compose multiple objectives using the composi-

tional barrier functions was presented. AND and OR logical operators were designed to

provably compose multiple non-negotiable objectives, with conditions for composibility

provided. Since the non-negotiable objectives are not guaranteed to be achieved, a natural

problem to address is that how to attain all the objectives simultaneously. We will explore

the solution to this problem in the following section in a computational framework.
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(a) Agents at 10.0s −1.0 0.0 0.8
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(b) Agents at 23.0s −1.0 0.0 0.8
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(c) Agents at 36.0s −1.0 0.0 0.8
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Figure 5.5: Experiement of four mobile robots executing waypoint controller regulated by
safety barrier certificates. Pictures on the left are taken by an overhead camera. The star,
square, cross and triangular markers representing waypoints are projected onto the ground.
A straght line connecting two robots were projected onto the ground if the two robots are
closer than Dc = 0.6m.
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(b) Agents at 25.0s −1.0 0.0 0.8
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(c) Agents at 42.5s −1.0 0.0 0.8
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Figure 5.6: Experiment of four mobile robots executing waypoint controllers regulated
by safety and connectivity barrier certificates. The safety and connectivity distances are
Ds = 0.15m and Dc = 0.6m. The lines representing inter-robot connectivity are projected
onto the ground using a projector. A video of the experiment can be found online [95].
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5.5 Permissive Barrier Certificates and Sum-of-Squares Programming

The compositional barrier certificates, encoded with CBFs, provides a way to simultane-

ously ensure multiple non-negotiable safety constraints. The negotiable higher level objec-

tives, encoded with CLFs or other similar tools, are enforced with minimal modifications

possible, i.e., not necessarily achieved.

Since a common control that satisfies both the CBFs and the CLFs does not necessarily

exist, a typical way to unite the pre-designed CLF and CBF is to use a QP-based controller

[63, 16, 18], i.e.,

u∗ = argmin
u∈Rn

J(u)+ kδ δ
2

s.t.
∂V (x)

∂x
g(x)u≤−∂V (x)

∂x
f (x)+δ ,

−∂h(x)
∂x

g(x)u≤ ∂h(x)
∂x

f (x)+κ(h(x)),

(5.21)

where δ is a CLF relaxation factor, such that the non-negotiable safety constraint is always

satisfied. However, simultaneous stabilization and safety enforcement are not guaranteed.

In certain cases described in Section 3.4, deadlocks might occur so that the higher level

objectives can never be achieved without appropriate perturbations.

In this Chapter, instead of relaxing the stabilization term, we will compute an estimate

of the region of safe stabilization with permissive barrier certificates, such that both the

stabilization and safety constraints are strictly respected [20].

5.5.1 Safe Stabilization for Autonomous Dynamical Systems

Computing estimates of the region of safe stabilization is closely related to computing

estimates of DoA, because both try to maximize the volume of interested region where

certain matrix inequalities are satisfied. In this section, we will show that the DoA estimate

derived with barrier certificates is strictly larger than the maximum contractive sublevel set

of the Laypunov function. An iterative optimization algorithm based on SOS program is

provided to numerically compute the most permissive barrier certificates for polynomial
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systems. Building upon the results developed in this section, permissive barrier certificates

for safe stabilization will be presented in Section 5.5.2.

Estimating the region of safe stabilization is closely related to estimating the DoA of

an equilibrium state, except for the extra consideration of safety constraints. Among the

various DoA approximation methods proposed in the literature, methods using the subset

of Lyapunov-like functions, such as quadratic Lyapunov functions [96] and rational poly-

nomial Lyapunov functions [97], are proved to be effective [98]. Further improvements on

the Lyapunov sublevel set based methods are developed in [99, 100, 101, 102] to reduce

the conservativeness with invariant sets. In this section, the set invariance property is es-

tablished with barrier certificates, which are allowed to take arbitrary shapes rather than the

sublevel set of the Lypapunov function. This method leads to a non-conservative estimate

of the DoA.

Expanding Estimate of DoA with Barrier Certificates

For generality of discussion, the autonomous dynamical system dealt with here is

ẋ = f (x), (5.22)

where x ∈ X , and f is locally Lipschitz continuous. Similarly, the control dynamical

system is considered as

ẋ = f (x)+g(x)u, (5.23)

where x∈X and u∈U are the state and control of the system, and f and g are both locally

Lipschitz continuous.

Assume the system (5.22) is locally asymptotically stable at the origin. Let ψ(t;x0)

denote the state trajectory of the system (5.22) starting from x0. The DoA of the origin is

defined as the set of all initial states which eventually converge to the origin as time goes

76



to infinity,

D = {x0 ∈X | lim
t→∞

ψ(t;x0) = 0}.

A commonly used method to estimate the DoA is to compute the sublevel set of a

given Lyapunov function V (x). This Lyapunov function should be positive definite, and its

derivative should be locally negative definite. Let V (c) = {x∈X |V (x)≤ c} be a sublevel

set of V (x). The largest inner estimate of the DoA using the sublevel set of the Lyapunov

function can be computed with

c∗ = max
c∈R

c

s.t. −∂V (x)
∂x

f (x)> 0, ∀x ∈ V (c)\{0}.
(5.24)

The estimate V (c∗) is straightforward to compute, but often conservative compared to in-

variant set based methods. This is because the shape of V (c∗) is restricted to the Lyapunov

sublevel set.

Next, we will show that the estimate of DoA can be further expanded using barrier

certificates and the given Lyapunov function. This is achieved by allowing the barrier cer-

tificates to take an arbitrary shape instead of the sublevel set of V (x). The most permissive

barrier certified region C = {x ∈X | h(x)≥ 0} can be computed as,

h∗(x) = argmax
h(x)∈P

µ(C )

s.t.− ∂V (x)
∂x

f (x)> 0, ∀x ∈ C \{0},
∂h(x)

∂x
f (x)≥−κ(h(x)), ∀x ∈ C ,

(5.25)

where µ(C ) is the volume of C . The largest estimate of the DoA with barrier certificates

is achieved with C ∗ = {x ∈X | h∗(x) ≥ 0}. By maximizing the volume of the barrier

certified region, C ∗ is guaranteed to be larger than V (c∗). This fact can be shown with the

following lemma.
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Lemma 5.5.1. Given an autonomous system (5.22) that is locally asymptotically stable at

the origin, the estimate of DoA with barrier certificates is larger than the estimate with the

sublevel set of Lyapunov function, i.e., µ(V (c∗))≤ µ(C ∗).

Proof. The largest inner estimate of DoA using the sublevel set of a given Lyapunov func-

tion is V (c∗) = {x ∈X | V (x) ≤ c∗}. A candidate barrier certificate can be designed as

h̄(x) = c∗−V (x), and the corresponding certified safe region is C̄ = {x ∈X | h̄(x) ≥ 0}.

The time derivative of h̄(x) is

∂ h̄(x)
∂x

f (x) =−∂V (x)
∂x

f (x), ∀x ∈ C̄ ,

which is always nonnegative within C̄ . By definition, h̄(x) is also nonnegative in C̄ , i.e.,

∂ h̄(x)
∂x

f (x)≥ 0≥−κ(h̄(x)), ∀x ∈ C̄ ,

which means h̄(x) is a valid barrier certificate and a feasible solution to (5.25). But h̄(x) is

not necessarily the optimal solution. So we have µ(V (c∗)) = µ(C̄ )≤ µ(C ∗).

Remark 1: With Lemma 5.5.1, (5.24) can be reformulated into an optimization problem

similar to (5.25), i.e.,

c∗ = max
c∈R

c

s.t. −∂V (x)
∂x

f (x)> 0, ∀x ∈ V (c)\{0},
∂ (c−V (x))

∂x
f (x)≥−κ(c−V (x)), ∀x ∈ V (c).

We can see that (5.24) also searches for a maximum barrier certificate. The shape of the

certified region is constrained to be a sublevel set of V (x). Since a specific shape of the

certified region is not required, (5.25) is more permissive than (5.24). In addition, h(x) is

allowed to decrease within the estimated DoA instead of monotone increasing.
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The fact that C ∗ is an inner estimate of the DoA can be established with the following

theorem.

Theorem 5.5.2. Given an autonomous dynamical system (5.22) that is locally asymptoti-

cally stable at the origin, the estimate of the DoA with barrier certificates, C ∗, is a subset

of the true DoA D . And C ∗ is guaranteed to be non-empty.

Proof. Given an arbitrary initial state x0 ∈C ∗, the trajectory of the state ψ(t;x0), t ∈ [0,∞),

is guaranteed to be contained within C ∗, due to the forward invariance property of barrier

certificates.

By the construction of C ∗ in (5.25), dV (ψ(t;x0))
dt is negative definite for ψ(t;x0) ∈ C ∗.

Therefore, V (ψ(t;x0)) is strictly decreasing along the trajectory ψ(t;x0), t ∈ [0,∞), except

at 0n. Since V (x0) is bounded and 0n is the only equilibrium point in C ∗, we can get

limt→∞ ψ(t;x0) = 0n. By the definition of the DoA, x0 ∈ D for any x0 ∈ C ∗,which means

C ∗ ⊆D .

It is shown in [42] that V (c∗) is non-empty. From Lemma 5.5.1, µ(V (c∗)) ≤ µ(C ∗),

thus C ∗ is also non-empty.

Iterative Search of Permissive Barrier Certificates

The optimization problem (5.25) is difficult to solve for general systems, since checking

non-negativity is often computationally intractable [41]. However, if non-negativity con-

straints are relaxed to SOS constraints, (5.25) can be converted to a numerically efficient

convex optimization problem. To this end, we will restrict (5.22) to polynomial dynamical

systems.

Let P be the set of polynomials for x ∈ Rn. The polynomial l(x) can be written in

Square Matrix Representation (SMR) [42] as ZT (x)QZ(x), where Z(x) is a vector of mono-

mials, and Q∈Rk×k is a symmetrical coefficient matrix. A polynomial function l(x) is non-

negative if l(x)≥ 0,∀x ∈ Rn. Furthermore, p(x) is a SOS polynomial if p(x) = ∑
m
i=1 p2

i (x)
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for some pi(x) ∈P . PSOS is the set of SOS polynomials. If written in SMR form, p(x)

has a positive semidefinite coefficient matrix Q� 0. The trace and determinant of a square

matrix A ∈ Rn×n are trace(A) and det(A), respectively.

Since the proposed method is an under-approximation method, we would like to max-

imize the volume of C such that the best estimate of DoA can be achieved. However, this

objective max(vol(C )) is non-convex and usually cannot be described by an explicit math-

ematical expression. In order to solve this issue, a typical way adopted in the literature is

to approximate the volume by using trace(Q), where h(x) = Z(x)T QZ(x). Here, we would

like to maximize trace(Q) to get the largest C similar to [42].

To deal with nonnegativity constraints over semialgebraic sets, we will introduce the

Positivestellensatz (P-satz).

Lemma 5.5.3. ([103]) For polynomials a1, . . . ,am, b1, . . . ,bl and p, define a set

B = {x ∈ Rn : ai(x) = 0, ∀i = 1, . . . ,m,

bi(x)≥ 0, ∀ j = 1, . . . , l}.

Let B be compact. The condition p(x) > 0,∀x ∈ B holds if the following condition is

satisfied:  ∃r1, . . . ,rm ∈P, s1, . . . ,sl ∈PSOS,

p−∑
m
i=1 riai−∑

l
i=1 sibi ∈PSOS.

This lemma provides an important perspective that any strictly positive polynomial

p(x) ∈ F is actually in the cone generated by ai and bi. Using the Real P-satz and the
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SMR form of h(x), (5.25) can be formulated into a SOS program,

max
h(x)∈P, L1(x)∈PSOS

L2(x)∈PSOS

Trace(Q)

s.t. −∂V (x)
∂x

f (x)−L1(x)h(x) ∈PSOS,

∂h(x)
∂x

f (x)+ γh(x)−L2(x)h(x) ∈PSOS,

(5.26)

where a linear function κ(x) = γx is adopted. The SOS program (5.26) involves bilinear de-

cision variables. It can be solved efficiently by splitting into several smaller SOS programs,

which leads to the following iterative search algorithm.

Remark 2: Notice that (5.26) requires an initial value of h(x) to start with. From Lemma

5.5.1, a good initial value can be picked as h̄(x) = c∗−V (x). This SOS program is guaran-

teed to generate a barrier certificate better than h̄(x).

Algorithm 1:

Step 1: Calculate an initial value for h(x)

Specify a Lyapunov function V (x), and find c∗ using the bilinear search method, i.e.,

c∗ = max
c∈R,L(x)∈PSOS

c

s.t. −∂V (x)
∂x

f (x)−L(x)(c−V (x)) ∈P(x)SOS.

Set the initial value for h(x) as h̄(x) = c∗−V (x).

Step 2: Fix h(x), and search for L1(x) and L2(x)

Using the h(x) from previous step, we can search for L1(x) and L2(x) that give the
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largest margin on the barrier constraint. This is achieved by solving

max
ε≥0, L1(x)∈PSOS

L2(x)∈PSOS

ε

s.t. −∂V (x)
∂x

f (x)−L1(x)h(x) ∈PSOS,

∂h(x)
∂x

f (x)+ γh(x)−L2(x)h(x)− ε ∈PSOS.

Step 3: Fix L1(x) and L2(x), and search for h(x)

With L1(x) and L2(x) from previous step, a most permissive barrier certificate can be

searched for. The barrier certificate is written in the SMR form h(x) = Z(x)T QZ(x). The

most permissive barrier certificate is computed by maximizing the trace of Q,

max
h(x)∈P

trace(Q)

s.t. −∂V (x)
∂x

f (x)−L1(x)h(x) ∈PSOS,

∂h(x)
∂x

f (x)+ γh(x)−L2(x)h(x) ∈PSOS.

This searching process is terminated if trace(Q) stops increasing, otherwise go back to Step

2.

Remark 3: In Step 2, the common approach is to just search for feasible L1(x) and

L2(x). However, there are multiple L1(x) and L2(x) available. By maximizing the margin ε

of the barrier constraint, better options of L1(x) and L2(x) can be chosen. This method will

expand the feasible space of h(x) for optimization in Step 3, which can help speed up the

optimization procedure.

Simulation Results for Autonomous Dynamical Systems

The iterative search algorithm 1 is implemented on two examples of autonomous dynam-

ical systems. In the simulation, the Matlab toolboxes SeDuMi [104], SMRSOFT [42],
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SOSTOOLS[105], and YALMIP [106] are used for solving the semidefinite and SOS pro-

gramming problems.

Example 1: Given the two-dimensional autonomous system

ẋ1

ẋ2

=

 x2

−x1− x2− x3
1

 ,
which has a locally stable equilibrium at the origin. A forth order Lyapunov function for

this system can be picked as V (x) = x2
1+x1x2+x2

2+x4
1+x4

2. Using the sublevel set of V (x),

we can get the largest estimate of DoA as

A1 = {x ∈ R2 | V (x)≤ 0.9759}.

With the iterative search algorithm for barrier certificates, a larger estimate of DoA can be

obtained as

A2 = {x ∈ R2 | h(x) = 0.0428+0.0033x2
1−0.1396x1x2

+0.0206x2
2−0.0976x4

1−0.0913x4
2−0.0079x3

1x2

+0.0061x1x3
2 +0.0779x2

1x2
2 ≥ 0}.

For comparison under the same condition, the order of the barrier certificate is also re-

stricted to be forth-order. As illustrated in Fig. 5.7, the barrier certificate expands the

estimate of DoA significantly.

Example 2: Consider the three-dimensional system


ẋ1

ẋ2

ẋ3

=


−x1 + x2x2

3

−x2

−x3

 ,
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Figure 5.7: Estimates of DoA for a two-dimensional autonomous dynamical system. The
barrier certified DoA estimate (region enclosed by the dashed blue curve) is significantly
larger than the Lyapunov sublevel set based DoA estimate (region enclosed by the solid
green curve).

which has a locally stable equilibrium at the origin. A Lyapunov function for this system

can be picked as V (x) = x2
1 + x2

2 + x2
3. The largest estimate of DoA based on the sublevel

set of Lyapunov function is

A1 = {x ∈ R3 | V (x)≤ 8}.

With barrier certificates, the largest estimate of the DoA is

A2 = {x ∈ R3 | h(x) = 7.9999−1.2828x2
3−0.2850x2

1

−0.5652x2
2−0.6685x1x2 ≥ 0}.

The barrier certificate is restricted to the same order as V (x). Both estimates of DoA are

illustrated in Fig.5.8. Since both regions are ellipsoids, the volume of the estimated DoA

can be analytically calculated. With the barrier certificate, the volume of the estimated

region is increased by µ(A2)−µ(A1)
µ(A1)

= 297.4%.

From these two examples, we can see that the barrier certificate based method provides

a more permissive estimate of the DoA than the Lyapunov sublevel set based method.
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Figure 5.8: Estimates of DoA for a three-dimensional autonomous dynamical system. The
black and blue ellipsoids represent the largest estimate of DoA based on the Lyapunov
function sublevel set and barrier certificates, respectively.

5.5.2 Safe Stabilization for Control Dynamical Systems

Permissive barrier certificates are developed in this section to maximize the estimated re-

gion of safe stabilization, where the system state is both stabilized and contained within the

safe set. Based on the DoA estimation method for autonomous systems in section 5.5.1,

the safe stabilization of control dynamical systems is addressed.

We will consider the safe stabilization problem described by (5.21) for a locally stabi-

lizable control-affine dynamical system (5.23). Instead of relaxing the stabilization term

with δ to resolve conflicts, we will synthesize a permissive barrier certificate with the max-

imum volume possible that strictly respects both the stabilization and safety constraints.

This permissive barrier certificate can be found using

h∗(x) = argmax
h(x)∈P,u(x)∈P

µ(C )

s.t. − ∂V (x)
∂x

f (x)− ∂V (x)
∂x

g(x)u(x)> 0, ∀x ∈ C \{0},
∂h(x)

∂x
f (x)+

∂h(x)
∂x

g(x)u(x)+κ(h(x))≥ 0, ∀x ∈ C ,

(5.27)

where µ(C ) is the volume of the certified safe region (C = {x ∈X | h(x)≥ 0}). Note that

(5.27) is a semi-infinite program that generates a feedback controller u(x) for every x ∈ C ,
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while (5.21) only products a point-wise optimal controller.

To enforce the safety constraints, it is required that the barrier certified region is con-

tained within the complement of the unsafe region, i.e., C ⊆X c
u . For generality, the unsafe

region is encoded with multiple polynomial inequalities,

Xu = {x ∈X | qi(x)< 0, ∀i ∈M }, (5.28)

where qi(x) are polynomials, and M = {1,2, ...,M} is the index set of all the safety con-

straints.

Similar to Lemma 5.5.1, we can show that the region of safe stabilization estimated with

barrier certificates is larger than the estimated region with Lyapunov sublevel set in [43].

Lemma 5.5.4. Given a dynamical control system (5.23) that is locally stabilizable at the

origin, the barrier certified region of safe stabilization estimate is larger than the estimated

region of safe stabilization using sublevel set of the Lyapunov function, i.e, µ(V (c∗)) ≤

µ(C ∗).

Proof. Similar to Lemma 5.5.1.

In order to maximize the volume of the safe operating region, the barrier certificate is

rewritten into SMR form, i.e., h(x) = Z(x)T QZ(x). Using the Real P-satz, the optimization

problem (5.27) is formulated into a SOS program,

max
h(x)∈P, u(x)∈P

L1(x)∈PSOS, L2(x)∈PSOS

Ji(x)∈PSOS,i∈M

Trace(Q)

s.t. −∂V (x)
∂x

( f (x)+g(x)u(x))−L1(x)h(x) ∈PSOS,

∂h(x)
∂x

( f (x)+g(x)u(x))+ γh(x)−L2(x)h(x) ∈PSOS,

−h(x)+ Ji(x)qi(x) ∈PSOS,∀i ∈M .

(5.29)
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The optimal barrier certificate obtained by solving the SOS program (5.29) is denoted by

h∗(x). The corresponding controller is u∗(x). The following theorem shows that guaranteed

safe stabilization can be achieved within the barrier certified region C ∗.

Theorem 5.5.5. Given a dynamical control system (5.23) that is locally stabilizable at the

origin, a Lyapunov function V (x), an unsafe region Xu in (5.28), and the solution h∗(x) to

(5.29), for any initial state x0 in C ∗= {x∈X | h∗(x)≥ 0}, there always exists a controller

that drives the system to the origin without violating safety constraints.

Proof. Starting from any state x0 ∈ C ∗, the state trajectory of the system (5.23) is denoted

by ψ(t;x0) when the controller u∗(x) from (5.29) is applied.

By Real P-satz, the second constraint in (5.29) implies that the barrier constraint in

(5.27) is always satisfied, which ensures that the state trajectory ψ(t;x0) is always contained

in C ∗. Similarly, the first constraint in (5.29) implies that dV (ψ(t;x0))
dt is always negative in

C ∗ except at the origin. Thus limt→∞ ψ(t;x0) = 0.

The third constraint in (5.29) ensures that “if−qi(x)> 0, then−h(x)> 0”. Consider the

contrapositive of this statement, we have “if h(x)≥ 0, then qi(x)≥ 0”. This statement holds

for any state x ∈ C ∗ and any safety constraint i ∈M , which means C ∗ ⊆X c
u . Because

ψ(t;x0) is contained in C ∗, ψ(t;x0) is also contained in the safe space X c
u .

Combining these statements above, the controller u∗(x) from (5.29) will drive any state

in C ∗ to the origin without violating any safety constraint.

Remark 4: With the generated permissive barrier certificates, it is guaranteed by con-

struction that the QP-based controller (5.21) is always feasible when δ is set to zero. This

is because u∗(x) is always a feasible solution for any x ∈ C ∗. The advantage of using a QP-

based controller (5.21) instead of u∗(x) is that it minimizes the control effort by leveraging

the part of nonlinear dynamics that contributes to stabilization.

The optimization problem (5.29) contains bilinear decision variables and requires a
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feasible initial barrier certificate. It can be split into several SOS programs and solved with

the following iterative search algorithm.

Algorithm 2:

Step 1: Calculate an initial guess for h(x)

Specify a Lyapunov function V (x), and find c∗ using bilinear search

c∗ = max
c∈R+, u(x)∈P, L(x)∈PSOS

Ji(x)∈PSOS, i∈M

c

s.t. −∂V (x)
∂x

( f (x)+g(x)u(x))−L(x)(c−V (x)) ∈PSOS,

−(c−V (x))+ Ji(x)qi(x) ∈PSOS, i ∈M .

With the result of the bilinear search, set the initial guess for the barrier certificate as h̄(x) =

c∗−V (x),

Step 2: Fix h(x), search for u(x), L1(x), and L2(x)

Using the h(x) from previous step, we can search for feasible u(x), L1(x), and L2(x),

while maximizing the barrier constraint margin ε .

max
ε≥0, u(x)∈P

L1(x)∈PSOS, L2(x)∈PSOS

ε

s.t. −∂V (x)
∂x

( f (x)+g(x)u(x))−L1(x)h(x) ∈PSOS,

∂h(x)
∂x

( f (x)+g(x)u(x))+ γh(x)−L2(x)h(x)− ε ∈PSOS.

Step 3: Fix u(x), L1(x), and L2(x), search for h(x)

Rewrite the barrier certificate into SMR form h(x) = Z(x)T QZ(x). With the u(x), L1(x),

and L2(x) from the previous step, we can search for the maximum volume barrier certificate
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that respects all the safety constraints,

max
h(x)∈P

Ji(x)∈PSOS, i∈M

trace(Q)

s.t. −∂V (x)
∂x

( f (x)+g(x)u(x))−L1(x)h(x) ∈PSOS,

∂h(x)
∂x

( f (x)+g(x)u(x))+ γh(x)−L2(x)h(x) ∈PSOS,

−h(x)+ Ji(x)qi(x) ∈PSOS, i ∈M .

Terminate if trace(Q) stops increasing, otherwise go back to Step 2.

Remark 5: In Step 2, the safety constraints qi(x)≥ 0, i ∈M do not need to be included.

This is because h(x) from previous step already satisfies these safety constraints.

Remark 6: To avoid unbounded control inputs, an additional constraint can be added

to limit the magnitude of the coefficients of the polynomial controller u(x).

This iterative search algorithm is implemented on two control dynamical systems to

achieve safe stabilization.

Example 3: Consider the simple two-dimensional mechanical dynamical system,

ẋ1

ẋ2

=

 x2

−x1

+
0

1

u, (5.30)

where x = [x1,x2]
T ∈ R2 and u ∈ R are the state and control of the system. A Lyapunov

function V (x) = x2
1 + x1x2 + x2

2 can be picked for the system.

The unsafe area of the state space is encoded with multiple polynomial inequalities,
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i.e., Xu = {x ∈ R2 | qi(x)< 0, i = 1,2,3}, where

q1(x) = (x1−3)2 +(x2−1)2−1 < 0,

q2(x) = (x1 +3)2 +(x2 +4)2−1 < 0,

q3(x) = (x1 +4)2 +(x2−5)2−1 < 0.

The largest estimate of the region of safe stabilization with sublevel set of V(x) can be

obtained as

A1 = {x ∈ R2 | V (x)≤ 5.8628}.

With the barrier certificate, this estimate can be enlarged to

A2 = {x ∈ R2 | h(x) = 0.5189−0.0669x1−0.1196x2

−0.0546x2
1−0.0630x1x2−0.0294x2

2 ≥ 0}.

For comparison purpose, the barrier certificate is restricted to be second order polynomial.

These estimates are illustrated in Fig. 5.9. By allowing the barrier certificate to be not

centered around the equilibrium, the estimate of the region of safe stabilization is expanded

significantly.

Example 4: Consider the three-dimensional system with multiple inputs,


ẋ1

ẋ2

ẋ3

=


x2− x2

3

x3− x2
1 +u1

−x1−2x2− x3 + x3
2 +u2

 , (5.31)

where x = [x1,x2,x3]
T ∈R3 and u = [u1,u2]

T ∈R2 are the state and control of the system.

A Lyapunov function for the system is picked to be

V (x) = 5x2
1 +10x1x2 +2x1x3 +10x2

2 +6x2x3 +4x2
3.
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Figure 5.9: Region of safe stabilization estimates for system (5.30). The red circles repre-
sent unsafe regions. The magenta vector field represents the system dynamics when u∗(x)
is applied. The barrier certified region of safe stabilization (dashed blue ellipse) is signif-
icantly larger than the estimated region (solid green ellipse) with Lyapunov sublevel set
based methods.

The unsafe region Xu = {x ∈ R3 | qi(x)< 0, i = 1,2,3,4} is represented with polynomial

inequalities

q1(x) = (x1−2)2 +(x2−1)2 +(x3−2)2−1 < 0,

q2(x) = (x1 +1)2 +(x2 +2)2 +(x3 +1)2−1 < 0,

q3(x) = (x1 +0)2 +(x2−0)2 +(x3−6)2−9 < 0,

q4(x) = (x1 +0)2 +(x2 +0)2 +(x3 +5)2−9 < 0.

The region of safe stabilization estimated with sublevel set of Lyapunov is

A1 = {x ∈ R3 | V (x)≤ 13.0124}.
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Figure 5.10: Region of safe stabilization estimates for system (5.31). The red spheres
represent unsafe regions. The barrier certified region of safe stabilization (blue ellipsoid) is
significantly larger than the region (black ellipsoid) obtained with Lyapunov sublevel sets.

Using the iterative search algorithm, the maximum permissive barrier certificate is

A2 = {x ∈ R3 | h(x) = 114.3555+1.4686x1 +7.2121x2

+19.8479x3−24.5412x2
3−14.7734x2

1−26.0129x1x2

−15.5440x1x3−28.3492x2
2−27.5651x2x3 ≥ 0}.

The results for region of safe stabilization estimates are shown in Fig. 5.10. In both ex-

amples, the Lyapunov sublevel set search terminates as soon as the boundary of one safety

constraint is reached, while the barrier certificate search terminates when all safety bound-

aries are touched. This also demonstrates the non-conservativeness of barrier certificates.

With the theoretical framework developed in this section, permissive barrier certified

can be used to strictly ensure simultaneous stabilization and safety enforcement of dynami-

cal systems. Iterative search algorithms using SOS programming techniques were designed

to compute the most permissive barrier certificates. In addition, the proposed barrier cer-

tificates based method significantly expands the DoA estimate for both autonomous and

control dynamical systems.
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CHAPTER 6

SAFE LEARNING USING BARRIER CERTIFICATES

Machine learning based control approaches are becoming increasingly popular as a way

to deal with inaccurate models, due to their abilities to infer unknown models from data

and actively improve the performance of the controller with the learned model. However,

the system is often subject to unsafe perturbations during the exploration phase. To extend

this powerful tool to safety critical systems, explicit safety designs are required. In terms

of the notion for safety, there are multiple methods proposed, e.g., Lyapunov stability and

reachability based safety design. In this chapter, we will show that barrier certificates are

good notions for the safety design of learning based controller [21].

As discussed in Section 3.1, barrier certificates expand the certified safe control space

significantly by allowing h(x) to decrease within C as opposed to strictly increasing [62, 2].

Compared with Lyapunov sublevel set based safe region, barrier certificates provide a more

permissive notion of safety. As a result, barrier certificates based safe learning controllers

have more freedom to efficiently explore those unknown states. This fact can be illustrated

with the following example.

Example 1: Consider an autonomous dynamical system

ẋ1

ẋ2

=

 x2 +0.8x2
2

−x1− x2 + x2
1x2

 , (6.1)

the safe region of this system is estimated with both the Lyapunov sublevel set and barrier

certificates.

Since (6.1) is a polynominal system, the safe sets can be computed directly with Sum-

of-Squares programs using YALMIP [106] and SMRSOFT [42] solvers. Both the Lya-

punov function and barrier certificates are limited to second order polynomials for fair
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comparison. The safe region estimated with the optimal polynomial Lyapunov function is

A1 = {x | V ∗(x)≤ 1},

where V ∗(x) = 1.343x2
1 +0.5155x1x2 +1.152x2

2.

The safe region estimated with barrier certificates is

A2 = {x | h∗(x)≥ 0},

where h∗(x) = 1−0.4254x1−0.3248x2−0.7549x2
2−0.8616x2

1−0.2846x1x2.

-2 -1 0 1 2

x
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-1

0

1

2

x
2

A2 (h∗(x) = 0)

A1 (V ∗(x) = 1)

Figure 6.1: Estimates of safe regions for system (6.1). The regions enclosed by the dashed
red ellipse and solid green ellipse are estimated safe regions with optimal polynomial Lya-
punov function V ∗(x) and barrier certificates h∗(x), respectively.

From Fig. 6.1, it can be observed that the barrier certified safe region A2 is much larger

than the Lyapunov based safe region A1. Consequently, safe learning controller based on

barrier certificates are allowed to explore more states of the system. In this Chapter, we

will leverage the non-conservative safety guarantee of barrier certificates to allow a much
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richer set of safe learning control options.

6.1 Learning Unknown Dynamics with Gaussian Process

6.1.1 Gaussian Processes

A GP is a nonparametric regression method that can capture complex unknown functions

[107]. With a GP, every point in the state space is associated with a normally distributed

random variable, which allows us to derive high probability statements about the system.

Adding some unknown dynamics d(x) to the original class of control-affine systems

(5.23), we now consider a system with partially unknown dynamics, i.e.,

ẋ = f (x)+g(x)u+d(x), (6.2)

where x ∈X ⊆ Rn and u ∈ U ⊆ Rm are the state and control of the system. Although

the proposed method applies to general dynamical systems, here we restrict our attention

to the class of systems that can be addressed with existing computation tools. It is also

assumed that d(x) is Lipschitz continuous. This assumption is necessary, because we want

to generalize the learned dynamics to states that are not explored before.

Since the unmodeled dynamics d(x) is n dimensional, each dimension is approximated

with a GP model G P(0,k(x,x′)) with a prior mean of zero and a covariance function of

k(x,x′), where k(x,x′) is the kernel function to measure the similarity between any two

states x,x′ ∈X . In order to make GP inferences on the unknown dynamics, we need to

get measurements of d(x). This measurement d̂(x) is obtained indirectly by subtracting the

inaccurate model prediction [ f (x)+g(x)u] from the noisy measurement of the system dy-

namics [ẋ+N (0,σ2
n )]. Since any finite number of data points form a multivariate normal

distribution, we can obtain the posterior distribution of d(x∗) at any query state x∗ ∈X by

conditioning on the past measurements [107].

Given a collection of w measurements yw = [d̂(x1), d̂(x2), ..., d̂(xw)]
T , the mean m(x∗)

95



and variance σ2(x∗) of d(x∗) at the query state x∗ are

m(x∗) = kT
∗ (K +σ

2
n I)−1yw, (6.3)

σ
2(x∗) = k(x∗,x∗)− kT

∗ (K +σ
2
n I)−1k∗, (6.4)

where bKc(i, j) = k(xi,x j) is the kernel matrix, and k∗ = [k(x1,x∗),k(x2,x∗), ...,k(xw,x∗)]T .

With the learned system dynamics based on GP, a high probability confidence interval

of the unmodeled dynamics d(x) can be established as

D(x) = {d | m(x)− kδ σ(x)≤ d ≤ m(x)+ kδ σ(x)}, (6.5)

where kδ is a design parameter to get (1− δ ) confidence, δ ∈ (0,1). For instance, 95.5%

and 99.7% confidence are achieved at kδ = 2 and kδ = 3, respectively.

6.1.2 Sparse Gaussian Process Methods

In this Chapter, the objective is to design safety strategy for online learning based control.

One of the main practical limitation of Gaussian Process is that it is computationally expen-

sive to implement, as the computation complexity is O(n2) for the kernel matrix inversion

operation with respect to sample data size n. In Section 6.3.2, we will present an online re-

cursive GP learning method. In addition, various computationally efficient approximation

methods for GP are proposed in the literature.

These GP approximation methods reduce the kernel matrix dimension in various ways.

One family of approximation method is based on a reduced set of inducing points called

pseudo-inputs [108]. It is assumed that with finite amount of pseudo-inputs, the full kernel

matrix can be well recovered. However, this method requires twice as many hyperpa-

rameters to optimize. In [109], eigenfunctions, which are known to be the most compact

representation among all orthogonal basis functions, are used to approximate the unknown

function. But EigenGP requires learning of both the eigenfunctions and hyperparameters.
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Sparse Spectrum Gaussian Process (SSGP) are presented in [110] to approximate the un-

known function with finite pairs of trigonometric basis functions. The SSGP method can

approximate any stationary full GP with high prediction accuracy. To deal with real world

robotics and engineering applications, input uncertainty can be incorporated into the SSGP

model using analytic moment-based approaches with closed-form expressions [111]. The

SSGP method and recursive GP learning method are adopted in the simulation and experi-

ment in Section 6.4.

6.2 Safe Learning Using Barrier Certificates

In order to ensure that the learning based controller never enters the unsafe region, we

will learn barrier certificates for the system and use the learned certificates to regulate the

controller. As discussed in Section 3.1, the barrier certificates certify a safe region that is

forward invariant. We can first start with an conservative barrier certificate with certificated

safe region C0(x), then gradually expand this certificated safe region with the collected data

until it stops growing. This incremental learning process is visualized in Fig. 6.2.

Figure 6.2: Incremental learning of the barrier certificates. The green region C0 and the
yellow regions Cn are the initial and final barrier certified safe regions, respectively. The
barrier certified safe region gradually grows as more and more data points are sampled in
the state space.

More concretely, the goal of the learning process is to maximize the volume of the
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barrier certified safe region C by adjusting h(x), i.e.,

max
h(x)

vol(C )

s.t. max
u∈U

min
d∈D(x)

{
∂h
∂x

( f (x)+g(x)u+d)+ γh(x)
}
≥ 0,

∀x ∈ C .

Since u and d are independent from each other, we can rewrite this optimization problem

into
max
h(x)

vol(C )

s.t. max
u∈U

{
∂hk

∂x
g(x)u

}
+ min

d∈D(x)

{
∂h
∂x

d
}

+
∂h
∂x

f (x)+ γh(x)≥ 0,∀x ∈ C

(6.6)

Using the high confidence interval D(x) in (6.5), the barrier certificates constraint can be

considered as

max
h(x)

vol(C )

s.t. max
u∈U

{
∂h
∂x

g(x)u
}
+

∂h
∂x

m(x)− kδ

∣∣∣∣∂h
∂x

∣∣∣∣σ(x)

+
∂h
∂x

f (x)+ γh(x)≥ 0,∀x ∈ C .

(6.7)

When more data points are collected about the system dynamics, the uncertainty σ(x) will

gradually decrease. As a result, more states will satisfy the barrier certificates constraint.

The goal of the exploration task is to actively collect data to reduce σ(x) and maximize the

volume of C .

It should be pointed out that the barrier certified region maximization problem (6.7)

is a non-convex, infinite dimensional optimization problem, which is intractable to solve

in practice. We will make two simplifications to make it solvable, namely by employing

adaptive sampling of the state space and parameterization of the shape of C .
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6.2.1 Adaptive Sampling of the State Space

Due to the Lipschitz continuity of the system dynamics, the safety of the system in X

can be evaluated by only sampling a finite number of points in X . Inspired by [3], we

will show that we can adaptively sample the state space without losing safety guarantees.

Similar to Lemma 4 in [3], it can be shown that h(x) and ḣ(x) are Lipschitz continuous in x

with Lipschitz constants Lh and Lḣ, respectively.

Let Xτ ⊂ X be a discretization of the state space X . The closest point in Xτ to

x ∈X is denoted as [x]τ , where ‖x− [x]τ‖ ≤ τ

2 .

Lemma 6.2.1. If the following condition holds for all x ∈Xτ ,

max
u∈U

{
∂h
∂x

g(x)u
}
+

∂h
∂x

m(x)− kδ

∣∣∣∣∂h
∂x

∣∣∣∣σ(x)

+
∂h
∂x

f (x)+ γh(x)≥ (Lḣ + γLh)τ, (6.8)

then the safety barrier constraint

max
u∈U

min
d∈D(x)

{
∂h
∂x

( f (x)+g(x)u+d)+ γh(x)
}
≥ 0 (6.9)

is satisfied for all x ∈X with probability (1−δ ), δ ∈ (0,1).

Proof. With the definition of the high confidence interval D(x), (6.8) can be rewritten as

max
u∈U

min
d∈D(x)

{
∂h
∂x

( f (x)+g(x)u+d)+ γh(x)
}
≥ (Lḣ + γLh)τ,

with a probability of (1−δ ), for all x ∈Xτ . This is equivalent to

ḣ(x)+ γh(x)≥ (Lḣ + γLh)τ,

for all x ∈Xτ .
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Because of the Lipschitz continuity of h(x) and ḣ(x), we have for any x ∈X ,

ḣ(x)+ γh(x) ≥ (ḣ([x]τ)−Lḣτ)+ γ(h([x]τ)−Lhτ)

≥ 0.

This means that the safety barrier constraint is satisfied for any x ∈X , if (6.8) holds for all

x ∈Xτ .

With the discretization of the state space, we only need to sample a finite number of

points to validate the barrier certificates. However, the number of required sampling points

is still very large. The following adaptive sampling strategy further reduces the number of

sampling points required.

Proposition 6.2.2. If the following condition is satisfied at x ∈X ,

max
u∈U

{
∂h
∂x

g(x)u
}
+

∂h
∂x

m(x)− kδ

∣∣∣∣∂h
∂x

∣∣∣∣σ(x)

+
∂h
∂x

f (x)+ γh(x)≥ (Lḣ + γLh)kττ, (6.10)

with kτ ≥ 0, then the safety barrier constraint (6.9) is satisfied for all y ∈X such that

‖x− y‖ ≤ kττ .

Proof. The proof is similar to lemma 6.2.1.

Leveraging the Lipschitz continuity of the barrier certificates, we can adaptively sample

the state space without losing safety guarantees. Sparse sampling is performed at places

with large safety margin, while dense sampling is only required at places with small safety

margin.
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6.2.2 Parameterization of the Barrier Certificates

Because maximizing the volume of C is a non-convex problem in general, we can pa-

rameterize the barrier certificate hµ(x) with µ to simplify the optimization problem. For

example, hµ(x) can be formulated as 1−Z(x)T µZ(x), where Z(x) is the vector of mono-

mials, and µ is a positive semi-definite matrix. Then maximizing vol(C ) is equivalent to

minimize the trace of µ . Further simplification can be made to fix the shape of C (by

optimizing only with the known dynamics) and enlarge the level set of barrier certificates.

With the shape parameterization and adaptive sampling technique, the barrier certificate

maximization problem (6.7) can be written as

max
µ

vol(C )

s.t. max
u∈U

{
∂hµ

∂x
g(x)u

}
+

∂hµ

∂x
m(x)− kδ

∣∣∣∣∂hµ

∂x

∣∣∣∣σ(x)

+
∂hµ

∂x
f (x)+ γhµ(x)≥ (Lḣ + γLh)τ,∀x ∈ C ∩Xτ .

(6.11)

In order to increase the learning efficiency during the exploration phase, the most un-

certain state in C is sampled,

xnext = argmax
x∈C∩Xτ

σ(x). (6.12)

It is assumed that a nominal exploration controller û can always be designed to drive the

system from the current state x to xnext, i.e., û = GoTo(x,xnext). Then the safety barrier

certificates are enforced through a QP-based controller to “rectify” the nominal control
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such that the system is always safe,

u∗ = argmin
u∈U

J(u) = ‖u− û‖2

s.t.
∂h
∂x

g(x)u+
∂h
∂x

m(x)− kδ

∣∣∣∣∂h
∂x

∣∣∣∣σ(x)

+
∂h
∂x

f (x)+ γh(x)≥ 0.

(6.13)

Therefore, the actual exploration controller u∗ tries to stay as close as possible to the desired

controller û, while always honoring the safety requirements. The exploration phase ends

when the safe region C does not grow any more. The learned maximum barrier certificates

can be further used to regulate other control tasks the system want to achieve.

6.2.3 Overview of the Safe Learning Algorithm

An overview of the barrier certificates based safe learning algorithm is provided in Algo-

rithm 2 in the Appendix. At the beginning, a conservative barrier certified safe region C0 is

provided. The most uncertain state xnext is computed based on the current GP model. Then,

the QP based controller (6.13) is used to ensure that the system is driven to xnext without

ever leaving Cn. After updating the GP model with the sampled data at xnext, the barrier

certificate optimization problem (6.11) is solved. The adaptive sampling technique (6.10)

is adopted here to reduce the number of states to be sampled. This process is repeated until

the safe region Cn stops growing.

6.3 Learning Based Control for Quadrotor System

The safe learning approach developed in Section 6.2 relies on a learning controller that

drives the system to explore interested states. The challenge of designing this learning

controller is that the 3D quadrotor system considered in this Chapter is highly nonlinear

and unstable. In this section, we will present a recursive learning controller based on GP to

learn the complex quadrotor dynamics online.
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6.3.1 Differential Flatness of 3D Quadrotor Dynamics

The quadrotor is a well-modelled dynamical system with forces and torques generated by

four propellers and gravity [82]. The relevant coordinate frames and Euler angles (roll φ ,

pitch θ , and yaw ψ) are illustrated in Fig. 6.3. The world, body, and intermediate frames

(after yaw angle rotation) are denoted by the subscripts w, b, and c, respectively.

Figure 6.3: Quadrotor coordinate frames.

The Euler angles are defined with the ZY X convention. Hence, the rotation matrix from

the body frame to the world frame can be written as

R =


cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ

−sθ sφcθ cφcθ

 ,

where sθ and cθ stand for sinθ and cosθ , respectively.

Here, we adopt the quadrotor model used in [5] to describe the nonlinear quadrotor
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dynamics, 

r̈ = gzw + 1
mRzw fz,

φ̇

θ̇

ψ̇

 =


1 sφ tθ cφ tθ

0 cφ −sφ

0 sφscθ cφscθ

ω,
(6.14)

where zw = [0 0 1]T , and r = [x,y,z]T , m, and g are the position of the center of mass,

the mass, and the gravitational acceleration of the quadrotor, respectively. tθ and scθ

are short for tanθ and secθ . The control inputs of the quadrotor are the body rotational

rates (ω = [ωx,ωy,ωz]
T ) and the thrust ( f ). It is assumed that the body rotational rates of

quadrotor are directly controllable through the fast response onboard controller, due to the

small rotational inertia and high torque features of quadrotors [5].

Similar to [82], the dynamics in (6.14) is differentially flat with the flat output chosen

as η = [rT ,ψT ]T . The full state q = [rT , ṙT ,θ ,φ ,ψ]T and control u = [ f ,ωT ]T can be rep-

resented as an algebraic function of [ηT , η̇T , η̈T ,
...
η

T ]. With the differential flatness prop-

erty, quadrotor trajectory planning can be simplified as smooth parametric curves. Given

a desired trajectory ηd(t) ∈ C3 that is three times differentiable, the feed forward control

uFF = [ fFF ,ω
T
FF ] can be derived by inverting the dynamics in (6.14),



fFF = −m‖r̈d−gzw‖,

ωFF =


1 0 −sθd

0 cφd sφdcθd

0 −sφd cφdcθd




φ̇d

θ̇d

ψ̇d



where θd = atan2(βa,βb), φd = atan2(βc,
√

β 2
a +β 2

b ), βa = −ẍd cosψd − ÿd sinψd , βb =

−z̈d +g, and βc =−ẍd sinψd + ÿd cosψd .

Differential flatness only gives the feed forward control uFF . In addition, the unknown
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model error and tracking error need to be handled by a feedback control uFB. The actual

control applied to the quadrotor is u = uFF +uFB, where



fFB = Kp < Rzw,rd− r >+Kd < Rzw, ṙd− ṙ >,

ωFB = Kp


φd−φ

θd−θ

ψd−ψ

+Kd


φ̇d− φ̇

θ̇d− θ̇

ψ̇d− ψ̇

+ K̄p


yd− y

x− xd

0


Note that with an inaccurate model, a high-gain feedback controller is needed to counteract

both the model error and disturbances. As a better model is learned over time, only a

low-gain feedback controller is needed with an improved tracking performance [112].

The previous section deals with precise quadrotor models. But it is often difficult to

acquire accurate parameters for quadrotor systems. In addition, the model (6.14) neglects

the uncertain effects of damping, drag force, and wind disturbances. Here, we will use GP

models to learn the unmodeled dynamics. The unmodeled dynamics can be captured with

six GPs along each dimension in the state space, i.e.,



r̈ = gzw + 1
mRzw fz +


G P1(0,k(q,q′))

G P2(0,k(q,q′))

G P3(0,k(q,q′))

 ,
φ̇

θ̇

ψ̇

=


1 sφ tθ cφ tθ

0 cφ −sφ

0 sφscθ cφscθ

ω +


G P4(0,k(q,q′))

G P5(0,k(q,q′))

G P6(0,k(q,q′))

 ,

where the input to the GPs is q = [rT , ṙT ,θ ,φ ,ψ]T , and the observations for the GPs are s =

[r̈T , φ̇ , θ̇ , ψ̇]T , respectively. At a new query point q∗, the mean mi(q∗) and variance σ2
i (q∗)

of the unknown dynamics can be inferred with (6.3). Based on the learned dynamics, a
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differential flatness based feed forward controller can be derived as,



fFF = −m‖r̈d− [m1(q),m2(q),m3(q)]T −gzw‖,

ωFF =


1 0 −sθd

0 cφd sφdcθd

0 −sφd cφdcθd




φ̇d−m4(q)

θ̇d−m5(q)

ψ̇d−m6(q)

 ,

where θd = atan2(β̄a, β̄b), φd = atan2(β̄c,
√

β̄ 2
a + β̄ 2

b ), β̄a = −(ẍd−m1(q))cosψd− (ÿd−

m2(q))sinψd , β̄b =−(z̈d−m3(q))+g, and β̄c =−(ẍd−m1(q))sinψd+(ÿd−m2(q))cosψd .

6.3.2 Recursive Online GP Learning

One issue with the GP regression is that the time complexity of GP inference is O(N3),

where N is the number of data points. The majority of the time is used to compute the

inverse of the kernel matrix K. While various approximation methods can be used to reduce

the GP inference time, it is still challenging to perform online GP inference for complex

dynamically systems like quadrotor. Here, we propose a recursive online GP Learning

method to compute the exact GP inference.

As the quadrotor moves forward, we will actively add multiple relevant data points into

the kernel matrix at each time step. At the same time, the data points that contribute the

least to the inference are deleted. The recursive data addition and deletion operations are

described as following.

Adding Multiple New Data to the Kernel Matrix

Let the kernel matrix at the ith time step be Ki, we can save the matrix inverse result from

the previous step as Li = (Ki +σ2
n I)−1. Denote the number of new data to be added as M.

106



With the new data yi+1 and kernal vector ki+1, we have

Li+1 =

L−1
i ki+1

kT
i+1 ci+1 +σ2

n I


−1

=

Li +Liki+1(ci+1 +σ2
n I− kT

i+1Liki+1)
−1kT

i+1Li

−(ci+1 +σ2
n I− kT

i+1Liki+1)
−1kT

i+1Li

Liki+1(ci+1 +σ2
n I− kT

i+1Liki+1)
−1

(ci+1 +σ2
n I− kT

i+1Liki+1)

 .
Notice that inversion operation only needs to be performed on a M×M matrix rather than

a large N×N matrix.

Deleting Multiple Old Data from the Kernel Matrix

After deleting M data points from the old Kernel matrix inversion Li = (Ki +σ2
n I)−1, the

new inverse of the kernel matrix becomes L̄i = (K̄i +σ2
n I)−1.

First, the data to be deleted is permuted to the bottom of the kernel matrix with a

permutation matrix Pπ , where π : N→ N is a permutation of N elements. The permuted

kernel matrix is K p
i = PπKiPT

π , which can be written into a block matrix form,

KP
i =

 K̄i Ei

ET
i Fi

 ,
where Ei,Fi are the known parts to be deleted. Similarly,

LP
i = PπLiPT

π

=

L̄−1
i Ei

ET
i Fi +σ2

n I


−1

.
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Since LP
i is known, it can be written into block matrix form with the same block dimensions

with (6.3.2),

LP
i =

Ai Bi

BT
i Ci

 .
With the block matrix inversion rule, L̄i can be recovered as

L̄i = Ai−BiC−1
i BT

i ,

which means to perform the deletion operation, the only matrix inverse required is C−1
i ∈

RM×M.

With the recursive data addition and deletion method, the GP inference can be obtained

efficiently online.

6.4 Simulation and Experiment Results

The GP based learning algorithm is validated on a simulated quadrotor model as well as

an actual palm-sized quadrotor (Crazyflie 2.0). In the simulation, the actual weight of

the quadrotor is 1.4 times the weight used in the computation. In addition, an unknown

constant wind of 0.1g is applied in the environment as illustrated in Fig. 6.4. Since the

standard fixed pitch quadrotor cannot generate reverse thrust, the thrust control is limited

to fz ∈ [−1.8mg,0]. This simulation setup is very challenging, because the learning based

quadrotor controller needs to deal with very inaccurate model and limited thrust.

During the actual experiment, the quadrotor is commanded to fly through a Dyson

bladeless fan as shown in Fig. 6.5. Since the actuators of the palm-sized quadrotor are

relatively weak compared with the wind force, it is very challenging to counteract the wind

disturbance and follow desired trajectories.
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Figure 6.4: A simulated quadrotor flies in an unknown wind field with an inaccurate model.

6.4.1 Online Learning of Quadrotor Dynamics

In the first example, the quadrotor is commanded to track a nominal trajectory (illustrated

in Fig. 6.4) using a differential flatness based controller with the given inaccurate model.

A PD controller is wrapped around to stabilize the quadrotor. During the simulation, the

quadrotor is intentionally pushed to unknown regions that has not been explored before.

This will help us evaluate the scalability of the algorithm.

The desired trajectory of the quadrotor is given as η̂ = [r̂(t)T , ψ̂(t)] ∈ C3, while the

actual trajectory is η = [r(t)T ,ψ(t)]. In practice, the actual trajectory might deviate signif-

icantly from the desired trajectory when the model is very inaccurate. To track the desired

trajectory, the nominal trajectory is designed with a pole placement controller,

...r i =
...
r̂ i−K · [(ri− r̂i), (ṙi− ˙̂ri), (r̈i− ¨̂ri)]

T .

In the simulation, the sample size of the recursive GP model is fixed at 300 data points.

At each time step, the most irrelevant data point is thrown away, and the most relevant

data point is added to the GP model. The data relevance is decided by the kernel function
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Figure 6.5: A plam-sized quadrotor, Crazyflie, flew through a Dyson fan and hovered in
the wind field with the learning based controller.

k(q,q∗), where q = [rT , ṙT ,θ ,φ ,ψ]T . It can observed that the tracking error of the learning

based controller is significantly smaller than the tracking error without GP inference, as

shown in Fig. 6.6.
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(b) Tracking error with GP

Figure 6.6: Tracking error of the differential flatness based flight controller with and with-
out GP inference.

With the recursive learning strategy, it is demonstrated in Fig. 6.7 that the GP inference

time is always kept below 20ms. Thus, the recursive GP inference method is very suitable

for online learning of quadrotor dynamics.

By pushing the quadrotor to unexplored regions, we can found that learning with q′ =
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Figure 6.7: Recursive GP inference time per iteration.

[ṙT ,θ ,φ ,ψ]T yields much better scalability than learning with q = [rT , ṙT ,θ ,φ ,ψ]T . The

reason might be the position r is not as important as other features in the current simulation

setup.

6.4.2 Learning Unknown Dynamics from Real Flight Data

In this experiment, a palm-size quadrotor (Crazyflie 2.0) is commanded to fly through the

center of a Dyson bladeless fan as shown in Fig. 6.5. The flight trajectory of quadrotor is

planned using spline interpolation. Then a learning based controller is used to track this

reference trajectory. To make sure that the quadrotor does not collide with the fan, a safety

corridor constraint is added to the path planning problem to constrain the motion of the

quadrotor as illustrated in Fig. 6.8.

As the quadrotor is flying in the wind field created by the Dyson fan, the unmodeled

dynamics is learned with Gaussian Process. Since the learning based controller needs up-

dates in real time, a sparse spectrum GP prediction method [111] is adopted to make online

updates. As shown in Fig. 6.9, the sparse spectrum GP method produces accurate predic-

tions similar to the full GP model. In addition, the undesired noise in the flight data are

smoothed out by the GP model automatically. Because the state is multi-dimensional with

different importance, the Automatic Relevance Determination (ARD) method [113] is used
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Figure 6.8: Planned flight trajectory for the quadrotor to flying through a Dyson fan. The
blue meshed tube is placed at the center of the fan.

to perform automatic feature selection.

With the learning based controller, the quadrotor successfully flew through the Dyson

fan and hovered in the unknown wind field without crashing as shown in Fig. 6.5. The

video of the experiment can be viewed at [74].

6.4.3 Learning Safety Barrier Certificates

In this example, the motion of the quadrotor is constrained within an ellipsoid safe region,

i.e.,
x2

0.16
+

y2

0.16
+

(z+0.8)2

0.36
≤ 1.

The quadrotor is controlled to fly back and forth on a vertical path inside the ellipsoid. The

goal is to learn how aggressively the quadrotor can fly in the z direction with an inaccurate
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Figure 6.9: Unknown dynamics learned using Gaussian Process from actual flight data.
The predicted dynamics using full GP and sparse spectrum GP are compared against the
real flight data. The SSGP prediction can run in real time with similar accuracy with full
GP model.

model and limited thrust.

The barrier certificates are parameterized as

hµ(r) = 1− (z+0.8)2

0.36
−µ ż2

− x2

0.16
− y2

0.16
− ẋ2

0.25
− ẏ2

0.25
≥ 0,

where µ is the barrier parameter to regulate how fast the quadrotor can fly in the z direction.

Small values of µ correspond to large admissible speed ż, which means more aggressive

flight behavior. Thus, the objective of the learning process is to minimize µ with the col-
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lected data.
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Figure 6.10: Adaptive sampling of the state space. The region enclosed by the solid green
ellipse C1 is the current safe region, while the region enclosed by the dashed red ellipse C2
is the optimized next safe region. The green cross markers and red asterisk markers are the
data points already sampled and to be sampled, respectively. The red circles centered at
those sample points are the confident safe regions. All the unexplored region between C1
and C2 are covered by the circular confident safe region.

To reduce the number of required sample points, the adaptive sampling strategy de-

veloped in Section 6.2.1 was adopted. An illustrative example of the adaptive sampling

strategy is given in Fig. 6.10. It can be observed that places closer to the boundary of the

safe region (z =−1.2 and z =−0.2) are sampled much denser than the place closer to the

center of the safe region (z = 0). Furthermore, downward speed (ż > 0) is sampled much

denser than the upward speed (ż < 0). This might be caused by the lack of reverse thrust to

counter the unmodeled dynamics.

A conservative barrier certificate (µ = 6.3) is provided at the beginning of the learning

process. Then, the quadrotor gradually explores the safe region C0 and expands it to Cn

(µ = 0.6), as illustrated in Fig. 6.11. The nominal exploration controller is always regulated
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by the barrier certificates using the QP-based controller in (6.13). During the learning

process, the quadrotor never leaves the barrier certified safe region.
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Figure 6.11: Initial and final barrier certificates. The regions enclosed by the solid green
ellipse (C0) and dashed red ellipse (Cn) are the initial and final barrier certified safe regions,
respectively. The green cross markers and red asterisk makers are the sampled data points.

In this chapter, a high confidence safe learning algorithm based on barrier certificates

was presented to explicitly address the safety challenge in learning based control. The

learning controller is regulated by the barrier certificates, such that the system never enters

the unsafe region. The unmodel dynamics of the system was approximated with a Gaussian

Process, from which a high probability safety guarantee for the dynamical system was

derived. The barrier certified safe region is gradually expanded as the uncertainty of the

system dynamics is reduced with more data. This safe learning technique was validated on

a quadrotor system with 3D nonlinear dynamics.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

A formal safety framework for multi-robot coordination and learning-based control was

developed in this dissertation. This framework provides the target system with provable

safety guarantee using barrier certificates, which cause minimal modifications to its higher

level objective. The barrier certificates based safety algorithms are designed in a computa-

tionally efficient way such that real-time applications on large scale systems are possible.

For the purpose of safe multi-robot coordination, a general framework of minimally in-

vasive collision avoidance for multi-robot systems was formally synthesized using control

barrier functions. The computation and sensing requirements were reduced significantly by

distributing safety barrier certificates to each individual agents and only considering neigh-

boring agents without losing the safety guarantee. Then a series of problems related to

safety barrier certificates, i.e., the conservativeness of the certificates, the feasibility of the

QP-based controller and deadlock-avoidance, were addressed. The proposed safety bar-

rier certificates were validated through various simulations, and then implemented on real

multi-robot systems consisting of multiple Khepera robots, Magellan Pro robot, GRITS-

Bots, and Crazyflie quadrotors.

As teams of robots often need to deal with multiple objectives simultaneously, a sys-

tematic way to compose multiple objectives using the compositional barrier functions was

presented. AND and OR logical operators were designed to provably compose multiple

non-negotiable objectives, with conditions for composibility provided. The composite

safety and connectivity barrier certificates were synthesized using the compositional bar-

rier functions to formally ensure safety and connectivity for teams of mobile robots. The

resulting barrier certificates were then combined with the general higher level objectives

using an optimization-based controller. Robotic experimental implementations validated
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the effectiveness of the proposed method. When safety and stabilization requirements are

both mandatory, a theoretical framework to generate permissive barrier certified region of

safe stabilization was developed to strictly ensure simultaneous stabilization and safety

enforcement of dynamical systems. Iterative search algorithms using SOS programming

techniques were designed to compute the most permissive barrier certificates. In addition,

the proposed barrier certificates based method significantly expands the DoA estimate for

both autonomous and control dynamical systems. The effectiveness of the iterative search

algorithm was demonstrated with simulation results.

In terms of learning based control, a safe learning algorithm based on barrier certificates

was developed in this dissertation. The learning based controller is regulated by the barrier

certificates, such that the system never enters the unsafe region. The unmodeled dynamics

of the system was approximated with Gaussian Processes, from which a high probability

safety guarantee for the dynamical system was derived. The barrier certified safe region

is gradually expanded as the uncertainty of the system dynamics is reduced with more

data. This safe learning technique was applied on a quadrotor system with 3D nonlinear

dynamics. The computation time of this learning method is reduced significantly with an

adaptive sampling strategy and sparse Gaussian Process inference method. Simulation and

experimental results demonstrated the effectiveness of the proposed method.

A formal safety framework for multi-robot coordination and learning based control

was developed in this dissertation using barrier certificates. It also gives rise to several

interesting future directions. The feasibility of the barrier certificates for teams of robots

was established without considering actuation limits. In addition, the actuation limits were

addressed in a heuristic way by parameterizing the nominal trajectories for the robots to

follow. A more systematic way to synthesize the barrier certificates is to incorporate the

actuation limits directly at the design stage.

The permissive barrier certificates were presented to deal with multiple objectives for

control dynamical systems using Sum-of-Squares programming. However, when it comes
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to large multi-agent networks, this method requires solving a large centralized semi-definite

programming problem, which is very computationally expensive. Future works might be

devoted to distribute the permissive barrier certificates computation problem to each indi-

vidual agents.

The safe learning approach presented in this dissertation deals with stationary dynam-

ical systems currently. Since the environment that the robot interact with might be non-

stationary, it would be beneficial to modify the safety framework in an adaptive manner.

To work with high dimensional and complex dynamical systems, it is desirable to further

reduce the computational complexity of the safe learning algorithm without compromising

the performance of the safe learning algorithm.
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APPENDIX A

PROOF OF THEOREMS

A.1 Proof of Theorem 3.2.2

Proof. Consider any agent k that is not a neighbor of agent i, i.e., Dik = ‖∆pik‖> Di
N . We

will prove that agent k is guaranteed to satisfy the pairwise safety barrier constraint with

agent i no matter what control action is taken.

Since Ḋik = ˙‖∆pik‖ = ∆pT
ik

‖∆pik‖∆vik, hik in (3.4) can be reformulated in terms of Dik and

Ḋik,

hik = Ḋik +
√

2(αi +αk)(Dik−Ds).

The derivative of hik is given by

ḣik = D̈ik +

√
αi +αk

2(Dik−Ds)
Ḋik.

With the velocity and acceleration limits of both agents, the lower bounds of hik and ḣik

can be derived by considering the worst case scenario (D̈ik = −αi−αk, Ḋik = −βi−βk).

Since agent k can be any agent in the multi-robot system, these lower bounds can be further

relaxed with the bounds on all agents’ acceleration and speed limits.

hik ≥
√

2(αi +αk)(Dik−Ds)−βi−βk

≥
√

2(αi +αmin)(Dik−Ds)−βi−βmax,

ḣik ≥ −αi−αk−
√

αi +αk

2(Dik−Ds)
(βi +βk)

≥ −αi−αmax−
√

αi +αmax

2(Dik−Ds)
(βi +βmax).
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From Dik > Di
N , we get

√
2(αi +αmin)(Dik−Ds) > βi + βmax and hik > 3

√
2(αi+αmax)

γ
.

Therefore

ḣik ≥ −αi−αmax−
√
(αi +αmax)(αi +αmin)

≥ −2(αi +αmax)≥−γh3
ik.

This means that no matter what control action agent k takes, it always satisfies the pairwise

safety barrier constraint, with agent i. Therefore, there is no need for agent i to consider

agent k, and the result follows.

A.2 Proof of Theorem 4.4.1

Proof. If any pair of quadrotors does not collide with each other, we have ri 6= r j and

Ai j(qi,q j) 6= 0, ∀i < j. Thus, hi j(qi,q j) are individually valid control barrier functions.

However, this does not imply that a common controller exists such that all constraints are

satisfied.

In order to prove that a common solution exists, let H ∈R1×3m be a convex combination

of −Ai j(qi,q j) ∈ R1×3m,

H =− Σ
i< j

αi jAi j(qi,q j), (A.1)

where [αi j] ∈D , D = {[αi j] | Σ
i< j

αi j = 1,αi j ≥ 0}.

It can be observed that H is the gradient of a convex function F(r) : R3m→ R, where

r = [rT
1 ,r

T
2 , ...,r

T
m]

T denotes the aggregate position of the quadrotors,

F(r) = Σ
i< j

αi j[(xi− x j)
4 +(yi− y j)

4 +(
zi− z j

c
)4]. (A.2)

Notice that F(r) is non-negative and has a global minimum of 0, when αi j(ri−r j) = 0,∀i<

j. Since all local minimums of the convex function F(r) are global minimums [68], it can

be deduced that its gradient ∇F(r) = H = 0 if and only if αi j(ri− r j) = 0,∀i < j.

121



Since ri 6= r j (quadrotors do not collide), it can be further inferred that H = 0 if and

only if αi j = 0,∀i < j, which violates the fact that Σ
i< j

αi j = 1. Thus we have shown by

contradiction that H 6= 0. Using this fact, it is guaranteed that Hv+ Σ
i< j

αi jbi j(qi,q j) > 0

always has a solution for any convex combination of −Ai j(qi,q j), i.e.,

min
[αi j]∈D

sup
v∈R3m

{ Σ
i< j

αi j[−Ai j(qi,q j)v+bi j(qi,q j)]}> 0.

Notice that D is closed and bounded, and R3m is closed. In this case, we can exchange min

and sup by using the minmax theorem [114], i.e.,

min
[αi j]∈D

sup
v∈R3m

{ Σ
i< j

αi j[−Ai j(qi,q j)v+bi j(qi,q j)]}

= sup
v∈R3m

min
[αi j]∈D

{ Σ
i< j

αi j[−Ai j(qi,q j)v+bi j(qi,q j)]}

= sup
v∈R3m

min
i< j
{−Ai j(qi,q j)v+bi j(qi,q j)}> 0,

which is equivalent to say that a common controller v that satisfies all the pairwise barrier

constraints always exists, i.e., Ksafe is non-empty.

A.3 Proof of Theorem 5.1.1

Proof. If the controller satisfies u(x) ∈ K(x), then −B′(x;− f (x)− g(x)u) ≥ −α(B(x)).

Apply the chain rule for B-derivative [93], it can be shown that

∂−B(x(t)) = −(B◦ x)′(t;−1)

= −B′(x(t);x′(t;−1))

= −B′(x(t);− f (x)−g(x)u),

where ∂−B(x(t)) = lima→t−
B(x(t))−B(x(a))

t−a is the left time derivative of B(x(t)). Therefore,

∂−B(x(t))≥−α(B(x)).
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Consider the differential equation ż(t)=−α(z(t)) with z(t0)=B(x(t0))> 0, its solution

is given by

z(t) = σ(z(t0), t),

due to Lemma 4.4 of [115], where σ is a class K L function.

With the Comparison Lemma [115]1, we can get

B(x(t))≥ σ(z(t0), t).

Using the properties of class K L function, it can be shown that B(x(t))> 0,∀t ≥ 0. Thus

C is forward invariant.

A.4 Proof of Lemma 5.3.1

Proof. The composite barrier function candidate B(x) defined on T is a Cr function. Thus

it is equivalent to show that

sup
u∈U

[L f B(x)+LgB(x)u+α(B(x))]≥ 0, (A.3)

Note that B(x),Bi j(x) and B̄i j(x) are all positive in T . Take the logarithm of B(x) and

differentiate using the chain rule, we get

ln(B(x)) = ∑
i, j∈M

j>i

ln(Bi j)+ ∑
(i, j)∈E

ln(B̄i j),

Ḃ
B

= ∑
i, j∈M

j>i

Ḃi j

Bi j
+ ∑

(i, j)∈E

˙̄Bi j

B̄i j
.

1Comparison Lemma also works for functions with left or right differentiability. The proof is similar to
[115], and thus omitted here.
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Thus the Lie Derivative along g direction is

LgB
B

u = ∑
i, j∈M

j>i

LgBi j

Bi j
u+ ∑

(i, j)∈E

LgB̄i j

B̄i j
u,

= ∑
i, j∈M

j>i

∆pi j

Bi j‖∆pi j‖
∆ui j− ∑

(i, j)∈E

∆pi j

B̄i j‖∆pi j‖
∆ui j,

= ∑
(i, j)∈E

B̄i j−Bi j

Bi jB̄i j

∆pi j

‖∆pi j‖
∆ui j + ∑

(i, j)/∈E

∆pi j

Bi j‖∆pi j‖
∆ui j,

= ∑
i∈M

[
∑

j|(i, j)∈E

B̄i j−Bi j

Bi jB̄i j

∆pi j

‖∆pi j‖
+ ∑

j|(i, j)/∈E

∆pi j

Bi j‖∆pi j‖

]
ui.

When L f B = 0, we have

∑
j|(i, j)∈E

B̄i j−Bi j

Bi jB̄i j‖∆pi j‖
∆pi j + ∑

j|(i, j)/∈E

∆pi j

Bi j‖∆pi j‖
= 0,∀i ∈M. (A.4)

Define a diagonal weight matrix W = diag(ωi j)∈R
N(N−1)

2 ×N(N−1)
2 for a complete graph, i.e.,

all vertexes are connected to each other, where

ωi j =


B̄i j−Bi j

Bi jB̄i j‖∆pi j‖ , if (i, j) ∈ E,

1
Bi j‖∆pi j‖ , if (i, j) /∈ E,

Let W 1/2 = diag(
√

ωi j), note ωi j can be negative, in which case W 1/2 contains imaginary

elements. Denote D = [Di j] ∈RN×N(N−1)
2 as the incidence matrix for a complete graph with

random orientations,

Di j =


1 , if vertex i is the tail of edge j,

−1 , if vertex i is the tail of edge j.
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Then (A.4) can be written as

DWDT [p1,p2, ...,pN ]
T = 0,

which implies W 1/2DT [p1,p2, ...,pN ]
T = 0.

If ∃ωi j 6= 0, then pi = p j. This is impossible, because agents i and j can’t be on top of

each other in Ci j. Therefore, in almost all cases, we have LgB 6= 0. A control action u can

always be found that shows (A.3) is satisfied.

If @ωi j 6= 0, i.e., all weights ωi j are zero, then the required connectivity graph is a

complete graph and B̄i j = Bi j,∀i 6= j. It can be shown that L f B is non-negative in this case.

Therefore, in this trivial case, we have LgB = 0,L f B > −α(B) for any class K function

α . Any control action u can validate that (A.3) is satisfied.

To sum up, the composite safety and connectivity barrier function B(x) satisfies (A.3)

∀x ∈T , and is thus a valid PBF.
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APPENDIX B

ALGORITHMS

B.1 Algorithm 1: Decentralized Deadlock Detection Resolution

Algorithm 1 Decentralized Deadlock Detection Resolution
Input: ui, ûi,vi
Output: ūi,Flag lock

Initialization : Flag lock = False
1: δLP = Decentralized LP
2: if ‖ûi‖ 6= 0 AND ‖ui‖== 0 AND ‖vi‖== 0 then
3: Flag lock = True
4: end if
5: if Flag lock == True then
6: if δLP > 0 AND ui ∈ vertex(Pi) then
7: DType = 1
8: else if δLP > 0 AND ui ∈ edge(Pi) then
9: DType = 2

10: else
11: DType = 3
12: end if
13: switch (DType)
14: case 1:
15: ūi = Decentralized QP(kγ(left) > 1,kγ(right) < 1)
16: case 2:
17: ūi = Decentralized QP(ûi +δ⊥)
18: default:
19: ūi = ui
20: end switch
21: else
22: ūi = ui
23: end if
24: return ūi,Flag lock

126



B.2 Algorithm 2: Barrier Certificates based Safe Learning

Algorithm 2 Barrier Certificates based Safe Learning

Input: Initial safe set C0 ⊆X , GP model G P(0,k(x,x′)), discretization Xτ , tolerance ε

Output: Final safe set Cn
Initialization : n = 0,x = x0

1: repeat
2: n = n+1
3: Find xnext with (6.12)
4: Design nominal controller û = GoTo(x,xnext)
5: Drive to xnext with (6.13)
6: Sample xnext, update GP
7: Expand vol(Cn) with (6.11)
8: until vol(Cn)-vol(Cn−1)≤ ε

9: return Cn
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