2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)

Munich, Germany, August 20-24, 2018

Enhanced branch and bound approach for receding horizon based
planning

Michael Jéantsch, Naresh N. Nandola, Li Wang, Mathias Hakenberg and Ulrich Miinz

Abstract—1In this work, we present an efficient planning
algorithm for flexible manufacturing industries. In particular,
we modified a traditional branch and bound approach to be
used in a receding horizon manner by adopting the terminal
cost concept from model predictive control domain. Thus, the
proposed algorithm combines best practices from traditional
planning and scheduling as well as from process control. The
efficacy of the proposed algorithm is demonstrated on job
shop problems of different sizes. Results are compared with
traditional branch and bound based planning. The initial results
are encouraging and demonstrate superior performance as well
as scalability for large problems.

I. INTRODUCTION

In today’s world, scheduling and planning is a key for
manufacturing industries to remain competitive and prof-
itable. In manufacturing industries, planning and scheduling
is seen as decision-making process, where scheduling only
considers the allocation of resources while planning also
considers matching specific task and resource skills [1].
Thus, scheduling and planning deal with efficient utilization
of available resources to complete a given set of tasks in
the most cost effective manner. Typically, a manufacturing
process involves multiple number of tasks that have to be
assigned to available machines based on their capabilities.
These tasks are scheduled such that the desired objective,
e.g., minimizing makespan, minimizing due date violation,
etc., is met.

Numerous algorithms for optimal planning and schedul-
ing are proposed by researchers from various areas. This
has been an active topic of research since last couple of
decades and still evolving. Kondil et al. [2] have proposed a
generic State-Task-Network (STN) framework for planning
and scheduling. The STN is a graphical representation with
two types of nodes with different characteristics: (i) state
node (ii) task node. The state node represents various process
states such as final product, intermediate product, etc. while
the task node represents various operations such as milling,
drilling, etc. The STN framework is extended to Resource-
Task-Network (RTN) by Pantelides [3] where the distinction
between nodes is relaxed and assumed that each task trans-
forms a set of resources to another set of resources. Thus,
making uniform description for all available resources. It also
captures the interaction of tasks with multiple resources. The

M. Jantsch, N. N. Nandola, M. Hakenberg and U. Miinz are with the
Autonomous Systems and Control Research Group in Siemens Corporate
Technology, Princeton, NJ, USA. L. Wang is a graduate student at the School
of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332 and did his internship with Siemens Corporate Technol-
ogy, Princeton, NJ, USA.

jaentsch.michael@siemens.com

978-1-5386-3593-3/18/$31.00 ©2018 IEEE

RTN and STN results in a complex Mixed Integer Linear
Program (MILP), which is computationally very expensive
and requires sophisticated solvers for reliability. Another
popular approach for the planning and scheduling in the
manufacturing industries is the so called branch and bound
method [4], [5]. The branch and bound approach works on
a tree evolution principle where each branch is evaluated
against specific criteria, e.g. minimize production time, and
progresses in the direction which satisfies this criteria. Thus,
at the end of complete tree-evolution, the optimal plan and
schedule is generated. The branch and bound is relatively
easy to implement but results in a combinatorial problem
that may become intractable for large problem. In order
to increase computational efficiency, Potocnik et al. [6]
used reachability analysis from control theory to eliminate
infeasible schedules (or combinations) and proposed optimal
depth of the branch and bound tree.

There have also been efforts to develop computation-
ally efficient framework for the planning and scheduling.
Dimitriadis et al. [7] proposed RTN-based rolling horizon
approach where the planning horizon is divided into a
detailed time block (DTB) and an aggregate time block
(ATB). The discrete time RTN [3] is considered for the
DTB while an aggregate RTN [8] is applied for ATB and
the resulting MILP is solved for the optimal solution. The
algorithm starts with the small DTB and fixes some of the
variables in DTB once the optimal solution is found. In
the next step, DTB and ATB are increased by a number of
time periods. This process is repeated until entire schedule
is generated. Recently, Li et al. [9] used similar concept to
solve a planning and scheduling problem that also include
production capacity. Moreover, they applied heuristic process
network decomposition techniques to achieve computational
reduction. In yet another effort, reduction in computation
time is achieved by formulating a rolling horizon based
MILP problem to get the optimal solution for multiple urban
energy hub system [10].

Aforementioned algorithms consider planning and
scheduling as an offline process and generate the optimal
schedule for the entire planning horizon before process
starts. For most of the cases this requires the solution of
an MILP problem, which often becomes computationally
intractable for large planning problems. On the other hand,
uncertainties, such as order cancellation, machine failure,
uncertain execution times, etc. are hallmark of any real
world application, which makes rescheduling inevitable.
This requires planning and scheduling in parallel with plan
execution to accommodate any unforeseen disruptions and

react accordingly. In other words, it demands active planning
and scheduling at each time step or whenever a deviation
between planned and executed schedule is detected. As a
consequence, there is a need for computationally efficient
algorithms that produce acceptable schedules (which are
close to optimal if not the optimal one) quick enough to
implement in online fashion. Moreover, it should be scalable
to large plants and robust to react to changes. We address
these issues in this work by borrowing the receding horizon
and terminal cost concept from Model Predictive Control
(MPCQ) literature [11] and propose an enhanced branch and
bound approach with a shorter planning horizon and the
introduction of estimated cost-to-go values. This estimated
cost-to-go considers all unplanned activities and captures
approximate cost beyond the finite planning horizon of
h-step (which is significantly lower than the full planning
horizon). Thus, a relatively small branch and bound problem
is solved at each time step from which only the first few
decisions are implemented on the plant. In this approach, the
approximate cost-to-go values play an important role and
facilitate: (i) tree exploration by considering costs beyond
the limited horizon, (ii) decision on which states will be
explored first within the planning horizon, and (iii) avoiding
exploration of decision branches with inferior solutions.

The paper is organized as follows: Section II briefly
gives and overview over concepts of the traditional branch
and bound approach. The proposed receding horizon based
branch and bound approach as well as the concept of
estimated cost-to-go is discussed in Section III. Section IV
demonstrates effectiveness of the proposed approach on job
shop problems with varying size. Section V summaries the
proposed work and future directions.

II. OVERVIEW OF BRANCH AND BOUND ALGORITHM

Level -0

G Level -1

S T vl

- Level -3

Level -n

Fig. 1.

Traditional branch and bound approach.

This section summarizes the traditional branch and bound
approach using an illustrative example. Fig. 1 demonstrates
a graphical representation of the classical branch and bound
approach where P products consisting of n tasks have to

161

be scheduled on a single machine such that overall due
date violation is minimized. As shown in Fig. 1, the branch
and bound enumerates nodes of a tree at each level. In this
figure, the number inside the circle represents the label of
the assigned task while number outside the circle represents
the objective function values at the node. In the beginning
at Level-0 no task is assigned. At Level-1, the objective
function (e.g. worst case violation of due date) is calculated
if particular task is assigned to the machine. As shown in
Fig. 1, assignment of Task-1 and Task-3 results in lowest
objective function value (100), while in all other cases the
objective function value is higher. Thus, at Level-2 only two
nodes, i.e., sequence starting with Task-1 and Task-3, are
considered for further evaluation to assign remaining tasks
and all other possibilities are discarded, i.e., those branches
are fathomed. Similarly, at Level-2, sequence (1,2,...) and
sequence (3,4,...) yield lowest objective function values.
Hence, for the next step only these branches are considered
for further evaluation. This process is repeated until all tasks
are scheduled. Consequently, it results in a tree with n levels.
At the end of the tree evaluation an optimal sequence of
task is generated, which is (1,2,4,..., k) for this example.
Here it should be noted that, if at any level the objective
function value of the current branch goes beyond the value
of earlier fathomed node then that particular node should be
added to the set of active nodes and considered for further
evaluation. For example, if the objective function value for
sequence (1,2,4,...) goes beyond 130 at some level than the
sequence (1,3,...) would become active, which otherwise
was fathomed at level-2. In summary, branch and bound
algorithm consist of two stages: (i) a branching stage that
enumerates all the possible scenarios at given level based on
predefined objective (ii) bounding stage that systematically
fathoms undesirable branches based on certain objective
function. This process is repeated at each level and proceeds
towards the most economical direction characterized by
objective function till all task assignments are completed,
i.e., when entire schedule is generated.

Thus, a branch and bound is a combinatorial problem with
intense computational requirement, which increases expo-
nentially with the number of tasks. It becomes more complex
in practice, where a typical job shop problem consists of m
machines and n tasks to be assigned among all machines.
Moreover, computational efficiency of this approach relies on
branching strategies and fathoming criteria to a large extent.
There is a number of branching strategies and heuristics
available for efficient branching [1], [12]-[14]. However, a
well formulated branch and bound algorithm generates only
active schedules [1], which contains optimal schedule. As per
[4], the following simple criteria is used to pick machines,
i.e., branching, for a particular task at each stage:

)

C* = min (r;; ”

i (rij + sij)
1<5<m

where m and n stands for number of machines and tasks,

respectively, r;; and s;; denotes possible start time and

processing time of task ¢ on machine j, C* is optimal

objective function value for optimization problem (1) and j*
is selected machine (which is obtained by solving problem
(1)). Thus, (1) gives a combination of the machine and task
whose next processing step can be completed at the earliest
possible moment. In next step, a partial schedule is generated
by selecting one task on machine j* from set of all task that
can be performed on it such that it satisfies the following
criteria:
Tije < C *, Vi 2)
These steps are repeated until all the tasks are assigned
to particular machine. As discussed earlier, certain nodes
are fathomed without further evaluation based on predefined
criteria. Many heuristics such as the disjunctive programming
method, shifting bottleneck method, etc. are developed for
fathoming. For more details on these heuristics, readers are
refereed to [1], [14].

IIT. COST-TO-GO ESTIMATION AUGMENTED BRANCH
AND BOUND FOR RECEDING HORIZON PLANNING

As discussed in the previous section, existing branch and
bound approaches calculate the entire schedule in one shot
and suffer from the curse of dimensionality such that it
may lead to computationally intractable problems for large
manufacturing units. Therefore, in this work, a receding
horizon based branch and bound approach for flexible man-
ufacturing and planning is proposed. In particular, we use
a fixed horizon h for planning instead of looking until end
of the plan (i.e. up to depth n). And at each stage, only
the first few tasks are implemented and again a plan is
calculated h steps ahead after updating the current state. This
process is repeated until all tasks are assigned and entire
schedule is generated. Thus, the overall computational effort
is significantly reduced due to a shorter planning horizon
of the branch and bound algorithm. However, without any
modification in the existing branch and bound approach,
there is a risk of generating schedules that may look optimal
in the beginning for a few steps but later would lead to
an extremely suboptimal schedule, as only a short planning
horizon is considered. To avoid such a scenario, inspired
by the terminal cost concept in model predictive control
literature, we introduce cost-to-go” function in the objective
function used for fathoming criteria while using a similar
branching rule as explained in the previous section. The
cost-to-go function is an estimation of the remaining cost
that would incur if a particular task is assigned to a selected
node at the current step. As a consequence, each node in
a particular layer is associated with two costs: (i) actual
cost due to already assigned tasks in the current branch
(ii) estimated future cost (i.e., cost-to-go) to complete the
entire schedule if particular branch is selected for the specific
task. Total cost is considered as summation of these two cost
components. Thus, due to inclusion of an additional “cost-
to-go” penalty in the objective function, the solution always
progresses towards the optimal even when considering a
smaller planning horizon.

162

Accuracy and success of the proposed approach rely on the
accuracy of the cost-to-go value. There may be many ways to
define cost-to-go estimation. In this work, we consider cost-
to-go from product perspective, as well as from machine
perspective and the maximum among these is considered
as the estimated cost-to-go value. The cost-to-go from the
product perspective can be calculated as maximum comple-
tion time among all products. Thus, cost-to-go calculation
from product perspective (C'I'Gp) is easy to calculate. On
the other hand, cost-to-go from the machine perspective
(CTG)pp) can be thought as minimum of the maximum
makespan of all machines, which leads to solving multiple
complex equations simultaneously. Size and complexity of
these equations depend on the number of available machines
and products. Finally, effective cost-to-go is calculated as
follows:

CTGE = max(C’TGp, CTGM) (3)

The estimated cost-to-go obtained from Eq.(3) is consid-
ered as a termination criteria for the h-step ahead horizon
branch and bound, which is solved at each stage in receding
horizon manner. The size of the planning horizon & is a
tuning parameter of the algorithm. The next section demon-
strates the effectiveness of our proposed algorithm.

IV. CASE STUDY

This section documents an application of the proposed
receding horizon planning (RHP) approach. In order to
demonstrate effectiveness of RHP, we consider job shop
scheduling problems of different sizes between 6 and 20,
where size x means x machines and x products with each
product consisting of x tasks. The results are compared
with the traditional branch and bound approach in terms of
objective function values (see Fig. 2) and computational time
(See Fig. 3). The branch and bound approach converged
to the optimal solutions for problem sizes up to 9 within
computation time of 15min while for problem size larger
than 9, it did not converge in reasonable time hence solver is
terminated randomly between 9 to 11 min with suboptimal
solution (i.e., when objective function value is comparable to
the corresponding RHP solution). In the figures, blue circle
indicates branch and bound with the optimal solution, red
diamond indicates branch and bound with the suboptimal
solution due to early termination and black + indicates
corresponding solution using the proposed RHP approach.

Figure 2 documents objective function values for different
size of the problem using branch and bound (blue circle and
red diamond) and RHP (black +) approach. From the figure
it can be seen that the quality of results using our proposed
RHP is comparable with the results a using traditional branch
and bound approach for the problem of all sizes considered in
this study. Although in some cases the traditional branch and
bound produces marginally better results, the RHP approach
outperforms branch and bound significantly in terms of
the computation time. Figure 3 documents comparison of
computational time using branch and bound (blue circle

240 ‘
O BB Optimal {
220: ¢ BB Suhoptimal 2
+ RHP
200 1
180 s 3 \
160 1
5 4
&
% 140 ¢ 2 6 1
= 120 o
+
100 2 s 1
80 1
+ @&
o
gor @
[]
40 ; ;
6 8 10 12 14 16 18 20
problem size
Fig. 2. Objective function comparison between traditional Branch and

Bound (blue circle and red diamond) and RHP (black +). Branch and Bound
(BB) is terminated at suboptimal stage for the problem size 10 and more
(red diamond).

900 ;
o] O BB Optimal
800 [¢ BB Suboptimal |
+ RHP
700]
¢
600 o 1
o o . ¢ o o %9
@ 500 ¢ ¢ 0 |
£
< 400 1
S
[
300 1
o
200 + . i
+
100 + i o
+ + o+
0 o .t i
6 8 10 12 14 16 18 20
problem size
Fig. 3. Computation time comparison between traditional Branch and

Bound (blue circle and red diamond) and RHP (black +). Branch and Bound
(BB) is terminated at suboptimal stage for the problem size 10 and more
(red diamond).

and red diamond) and RHP (black +). It can be seen that
computation time for RHP is significantly less than the
corresponding solution using branch and bound. Further, by
looking at problem sizes up to 9 (where branch and bound
converged to the optimal and denoted by blue circle in the
figures), it can be seen that the computational time increases
exponentially with problem size in case of the branch and
bound approach while for RHP it increases marginally. Thus,
the proposed RHP approach is scalable for large problem
sizes, which is very critical for its practical use.

V. SUMMARY AND FUTURE WORK

In this paper we proposed a computationally efficient
receding horizon based branch and bound approach for
flexible manufacturing planning. The effectiveness of the

163

proposed algorithm is demonstrated on the jobshop problem
and results are compared to a traditional branch and bound
approach. From the results it can be concluded that the
proposed approach provides marginally suboptimal solutions
as compared to the branch and bound approach. However, it
is scalable in terms of computational time, which remains
almost the same when increasing the problem size while
traditional branch and bound shows exponential increase in
the computation time. The success of the proposed approach
is greatly relies on the design of cost-to-go function. A bad
design of cost-to-go function would lead to a solution which
looks optimal in the beginning but later, after implementing
a few steps, it may even lead to infeasible solutions. This
is called a dead-lock situation. In such a scenario entire
manufacturing unit would go for a toss and may lead to huge
economical loss. Our future work involves optimal design of
the cost-to-go function to avoid such a situation for various
other scheduling application such as batch scheduling in
process industries.

REFERENCES
[1]
[2]

M. Pinedo, Scheduling: Theory, Algorithms, and Systems. New York:
Springer, 2012.

E. Kondili, C. Pantelides, and R. Sargent, “A general algorithm
for short-term scheduling of batch operationsi. milp formulation,”
Computers & Chemical Engineering, vol. 17, no. 2, pp. 211 — 227,
1993.

C. Pantelides, “Undefined frameworks for optimal process planning
and scheduling,” in Proc. Second International Conference of Foun-
dations of Computer-Aided Process Operations, 1994, pp. 253-274.
B. Giffler and G. L. Thompson, “Algorithms for solving production-
scheduling problems,” Operations research, vol. 8.4, pp. 487-503,
1960.

P. Y. Gan and K. S. Lee, “Scheduling of flexible-sequenced process
plans in a mould manufacturing shop,” International Journal of
Advanced Manufacturing Technology, vol. 20, no. 3, pp. 214-222,
2002.

B. Potocnik, A. Bemporad, F. D. Torrisi, G. Musi¢, and B. Zupancic,
“Hybrid modelling and optimal control of a Multiproduct Batch Plant,”
Control Engineering Practice, vol. 12, no. 9, pp. 1127-1137, 2004.
A. Dimitriadis, N. Shah, and C. Pantelides, “Rtn-based rolling horizon
algorithms for medium term scheduling of multipurpose plants,”
Computers & Chemical Engineering, vol. 21, pp. S1061 — S1066,
1997, supplement to Computers and Chemical Engineering.

S. J. Wilkinson, Aggregate formulations for large-scale process
scheduling problems. PhD thesis, Imperial College London, 1996.
Z. Li and M. G. Ierapetritou, “Rolling horizon based planning and
scheduling integration with production capacity consideration,” Chem-
ical Engineering Science, vol. 65, no. 22, pp. 5887 — 5900, 2010.

J. F. Marquant, R. Evins, and J. Carmeliet, “Reducing computation
time with a rolling horizon approach applied to a milp formulation
of multiple urban energy hub system,” Procedia Computer Science,
vol. 51, pp. 2137 — 2146, 2015, international Conference On Compu-
tational Science, ICCS 2015.

X. David-Henriet, L. Hardouin, J. Raisch, and B. Cottenceau, “Model
predictive control for discrete event systems with partial synchroniza-
tion,” Automatica, vol. 70, no. June, 2016.

B. S. Peter Brucker, Bernd Jurisch, “A branch and bound algorithm
for the job-shop scheduling problem,” Discrete Applied Mathematics,
vol. 49, pp. 107-127, 1994.

A. Hariri and C. N. Potts, “A branch and bound algorithm for the
job-shop scheduling,” J.K.A. U.: Sci, vol. 3, pp. 201-209, 1991.

C. A. Floudas, Nonlinear and Mixed-Integer Optimization: Funda-
mentals and Applications citation information. New York: Oxford,
1995.

[3

=

[4]

[5]

[8]
[9

—

[10]

[11]

[12]

[13]

[14]

