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Abstract— A large fraction of biopharmaceuticals are pro-
duced in Escherichia coli, where each new product and strain
currently requires a high degree of growth characterization
in benchtop and industrial bioreactors to achieve economical
production protocols. The capability to use a standard set of
sensors to characterize a system quickly without the need to
conduct numerous experiments to determine stable growth rate
for the strain would significantly decrease development time.
This paper presents a cell metabolic indicator (CMI) which
provides better insight into the E. coli metabolism than a growth
rate value. The CMI is the ratio of the oxygen uptake rate
(OUR) of the culture and the base addition rate (BAR) required
to keep pH at a desired setpoint. The OUR and BAR are
measured using a off-gas sensor and pH probe, respectively,
and thus the CMI can be computed online. Experimental
results demonstrate the relationship between CMI and the
different cell metabolic states. A previously published model
is augmented with acid production dynamics, allowing for
comparison of the CMI-based controller with an open-loop
controller in simulation. The CMI-based controller required
little a priori knowledge about the E. coli strain in order to
achieve a high growth rate. Since many different types of cells
exhibit similar behaviors, the CMI concept can be extended to
mammalian and stem cells.

I. INTRODUCTION

Many important biopharmaceutical products, including
insulin and human growth hormone, are grown in computer-
controlled bioreactors using recombinant strains of the bacte-
ria Escherichia coli[1]. Most often, automated industrial and
benchtop bioreactors use a very simple control methodology:
closed loop PID control on environmental variables such
as pH, temperature, and dissolved oxygen, and a preset
exponential feeding schedule or other growth profile based
on prior experience with the particular strain. An operator
monitors sensors throughout the process to detect and min-
imize the effects of stresses to the culture. One common
source of stress is overfeeding of glucose, which creates the
waste product acetate, which inhibits growth. Large numbers
of cultures must be run to determine a feeding protocol that
maximizes the growth rate, final cell mass, and recombinant
protein production [2], [3].

Bioreactors usually employ a standard sensor set, moni-
toring pH, temperature, dissolved oxygen (DO), and oxygen
off-gas (oxygen uptake rate, OUR). Commonly available
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sensors do not measure biomass, glucose concentration, or
acetate concentration. While online sensors for some of these
variables have been developed, the sensors tend to be either
too expensive or too unreliable [4]. The inability to sense
these variables online is central to the problem of growth
rate control. The focus over the last three decades [5] has
been to design control algorithms which maintain a desired
growth rate. Without online biomass measurements, adaptive
observer-based estimators for growth rate and biomass were
constructed based on ODE models using coefficients de-
rived from previous experiments. Controllers based on these
estimators were used to successfully maintain conservative
growth rate setpoints [6], [7]. Another popular estimation
method for biomass and growth rate is neural networks
[8], [9]. Regardless of the type of estimator employed,
accurate estimation requires numerous prior characterization
experiments and/or many training sets.

The cell metabolic indicator (CMI) presented in this paper
provides a more accurate picture of cell metabolism than
growth rate alone. Theoretical and experimental results agree
that the distinct metabolic phases can be identified by their
CMI profile. Based on sensors commonly available on a
benchtop bioreactor, the CMI is the ratio of the OUR and
BAR signals, and can be tracked on-line in real time. A
simulated culture was characterized using the CMI and a
CMI-based controller was designed that maintained high
growth rates and avoided harmful byproduct production.
This CMI-based controller is compared with a traditional
open loop controller and achieved a larger total biomass
production.

II. E. COLI CULTURE & METABOLISM

A typical E. coli fermentation has two phases, batch and
fed-batch. In the batch phase, the initial glucose is consumed
and cells grow rapidly. Fed-batch begins with the start of an
external glucose feed after the initial glucose is depleted. The
feed rate often follows an exponential profile with growth
rate setpoint µset, which represents the substrate-limited
growth rate of the cells.

In order to understand how the CMI is a more accurate
representation of E. coli metabolism than the growth rate
value, a brief overview of E. coli metabolism is presented.

A. E. coli Metabolism

Fundamentally, E. coli metabolism uses oxygen and glu-
cose to generate biomass and excrete carbon dioxide. The
cells absorb glucose, which is processed via three main
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reactions: glycolysis, pyruvate decarboxylation, and the Tri-
carboxylic Acid (TCA) cycle. These reactions consume
oxygen and produce some acidic byproducts. When the
glucose concentration is not too high, the culture is only
in oxidative metabolism, with growth rate, µ1. When the
glucose concentration is too high, µ1 → µ1max and the TCA
cycle is processing oxygen (OUR) and glucose at its maxi-
mum rate. The excess glucose is redirected to production of
acetate (acetic acid), a byproduct. The production of acetate
is known as overflow metabolism, with a growth rate, µ2.
If the glucose concentration lowers, acetate production stops
µ2 → 0 and the TCA cycle processes acetate alongside of
glucose. The consumption of acetate is known as metabolic
consumption metabolism, with growth rate, µ3 [10]. The
production and presence of acetate is detrimental because
acetate inhibits overall oxygen capacity, lowering µ1max.

B. The Cell Metabolic Indicator

The metabolic state of the culture is not apparent simply
by measuring the growth rate, µ. The growth rate only
reflects the combinations of the different metabolic phases,
for instance, in oxidative metabolism, µ = µ1; during
overflow, µ = µ1max + µ2; and in metabolite consumption,
µ = µ1 + µ3 until all the acetate is consumed. In contrast,
the cell metabolic indicator (CMI), defined as

CMI =
OUR

BAR
(1)

can indicate the metabolic phase of the culture. The OUR
is closely related to the rate of the TCA cycle, directly
indicating the level of oxidative metabolism and if appli-
cable, acetate consumption. Since pH is controlled in the
fermenter, BAR is closed related to the total growth rate
from all three metabolic phases. Thus, CMI represents the
ratio of the oxidative metabolism to the total metabolism.
In oxidative metabolism, the ratio of OUR and BAR has
some minimum, CMImin, which represents µ1 → µ1max.
In overflow metabolism, CMI < CMImin as OUR saturates
and BAR grows due to acetate production. If the glucose
concentration lowers, metabolite consumption metabolism
begins and the combined OUR from µ1 + µ3 drives CMI
>> CMImin. When the acetate is totally consumed, the
CMI decreases to CMImid, some value above CMImin. The
metabolic phases of a culture can be accurately identified
given a profile of CMI and only the values of CMImid and
CMImin (see Fig. 1).

Fig. 1. Illustration of valid ranges for CMI and the oxidative (blue),
overflow (red), and metabolite consumption (green) metabolism.

C. Demonstrating CMI

In order to test the validity of the assumptions behind
the CMI, an E. coli MG1655 pTVP1GFP [11], [12] culture
was grown and discrete glucose pulses were administered to
push the culture into overflow metabolism. The full details
of culture preparation can be found in [13].

The 5-L B.Braun Biostat B bioreactor (Sartorius-stedim
North America Inc, Bohemia, NY) is an autoclavable glass
vessel with steel head plate with attachments for a motor,
sensors, and a digital control unit. The digital control unit
(DCU) provides power, reads sensors, and provides control
either onboard or from a separate PC. Temperature is con-
trolled via a water jacket. The pH is controlled through the
addition of base. The dissolved oxygen level is maintained
via sparging in conjunction with varying the stir speed. These
states are controlled using sensor data from temperature, pH,
and dissolved oxygen probes. The base and feed solutions
are added via peristaltic pumps, and the mass additions were
monitored through balances (Ohaus Corp, Parsippany, NJ).
The input gas was controlled by a mass flow controller
(Omega Engineering Inc., Stamford, CT) and exhaust gas
composition by an off-gas sensor (BlueSens gas sensor
GmbH, Herten, Germany).

The fed-batch phase began around 5 hours. The Biostat B
DCU onboard PID controllers maintained temperature and
pH; the setpoints were 37 C and 6.95, respectively. A PC
running a Simulink model with Matlab 2012a (Mathworks
Inc, Natick, MA) provided feed rate commands using an
open-loop feed rate profile with a growth rate setpoint of 0.25
h−1 and provided motor commands to keep the DO above
30%. The data sample rates for the DCU, off-gas sensor, and
balances were 15, 10, and 5 seconds respectively.

During the fed-batch phase, two pulses with durations of
2 minutes and 5 minutes and with magnitudes five times
and three times the current feed rates, respectively, were
administered. The pulses were designed to help determine
how much glucose is required to push the culture into
overflow. By administering a discrete glucose pulse, the
culture cycled through all metabolic phases, yielding the full
range for CMI. The first pulse was clearly large enough to
cycle the cell metabolism. The BAR increased causing the
CMI to go down, indicating overflow metabolism. Minutes
later, the glucose concentration declined, initiating metabolite
consumption metabolism, driving up the CMI. After the
acetate was consumed, the CMI returned to steady state
(0.70), indicating only oxidative metabolism was active. The
second spike was longer than the first, but with a smaller
magnitude. The larger amount of biomass present at the time
of the second pulse accounted for the lower magnitude of the
CMI response; the cells were not sent as far into overflow.
The CMI values during overflow for the first and second
pulse, 0.365 and 0.408, appear to confirm this. The peak of
the CMI response was lower after the second pulse (1.14
versus 1.65), which indicated a smaller amount of acetate
had to be consumed before settling again to the steady state
oxidative metabolism value of 0.70. The CMImid for this
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Fig. 2. This figure shows the results of the glucose pulse experiment. The
arrows along the time axis indicate the location and duration of each pulse.

culture is between 0.70 and 1.14 and the CMImin for this
culture is between 0.408 and 0.70.

III. E.COLI BIOPROCESS SIMULATION MODEL

In order to further study the potential of the CMI as a
metabolic indicator as well as explore its use for control, an
appropriate bioprocess model was developed for simulation.
The uptake rate model from Xu et al. [14] presented an
accurate representation of E. coli metabolism and was used
in many estimators and controllers [15], [16]. Two equations
from the simulation model are shown below:

µ(A,S) = (qSox − qm)YX/Sox
+ qSof +

qSofYX/S,of + qAcYX/A (2)

Ḣ = qSoxYH/Sox
+ qSofYH/Sof

+ qApYH/A

+qAcYH/Aox
+BAR− F

V
H (3)

In Eq. (2) and Eq. (3), X , S, and A represent the con-
centrations of biomass, glucose, and acetate in the culture.
The µ represents the growth rate, which shifts depending on
the three metabolic phases. The F represents the input feed
rate of glucose and V the culture volume. The q represents
an uptake term, i.e. qS glucose uptake rate, qAp acetate
production rate, qAc acetate consumption rate. A detailed
representation of the Xu model can be found in [14].

The uptake rate model was augmented to form a new
model (Xu+H model) which includes acid production
dyanamics, enabling simulation of BAR, see Eq. (3). Eq.
(3) was built out of terms already present in the Xu model;
the H represents the concentration of H+ ions in the culture
and the production and consumption of acidic byproducts
according to each phase of E. coli metabolism.

IV. E.COLI BIOPROCESS SIMULATIONS

Using Simulink, the Xu+H model was used to simulate the
fed-batch culture pulse experiment. The reponse of the CMI

in the different metabolic phases in reaction to simulated
pulses matched that of the experiment. In another fed-
batch simulation, with no acetate present, the CMImin value
was determined by examining the BAR curve, whose slope
changes once overflow metabolism begins. The value for
CMImid corresponds to some low growth rate, (µ < 0.15
hr−1).

The performance of an open-loop controller was compared
with a CMI-based controller. Each simulation evaluated a
controller’s ability to keep the E. coli at a high rate of
growth while not producing waste products, i.e. acetate.
Each simulation starts in the fed-batch phase, with an initial
level of acetate remaining from the overflow metabolism that
occurred in the batch phase. Most E. coli experiments do
not exceed 24 h in duration. Assuming 5 to 6 hours for
batch phase, the following simulations show 18 hours of fed-
batch culture. For the simulation, CMImin is assumed to be
known, either by online identification or CMI characteriza-
tion from a previous experiment.

A. Open-Loop Controller

Open-loop controllers see wide use in industry and
academia, the open loop controller uses known attributes
about the strain, YX/S , and experimental setup, X0V0, to
generate an exponential feeding curve at a rate set by the
user, usually based on previous knowledge. Usually, an open-
loop controller maintains the culture at a user-specified safe
growth rate reasonably far away from overflow metabolism.
For this simulation, a growth rate was chosen that would
yield high biomass without producing acetate. The form of
the open loop controller can been seen in eq (4).

F (t) =
µsetX0V0

YX/S(SF − S0)
eµsett, (4)

with µset representing the desired growth rate, X0 the
initial biomass concentration in the bioreactor, V0 the initial
volume, SF the glucose concentration of the feed, YX/S the
glucose to biomass yield coefficient for this strain, and S0

the initial glucose concentration [17].

B. A CMI-based Controller

With the ability to track metabolism using the CMI,
this controller was designed to maintain the CMI close
to CMImin, ensuring a high growth rate without entering
overflow metabolism. The CMImin for this culture was
identified to be 1.76 and CMId set to 1.78.

One issue with control for exponentially increasing pro-
cesses is the lack of stability as the disturbances also
exponentially increase [18]. Similarly, this also requires
exponentially increasing control inputs. To overcome these
constraints, a PID controller is moved into the exponential
term of the simple exponential feed rate equation (eq (5),(6))
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TABLE I
CONTROLLER SIMULATION RESULTS

units µmaxµmaxµmax CMI PID Open Loop
setpoint µset = 0.27 h−1 CMId= 1.78 µset = 0.22 h−1

µ̄ h−1 0.27 0.24 0.21
biomass,X g/L 126 106 78
time,A→ 0 hr 0 11 6.5

[18],

F = F0eαt (5)

α = Kp

(
CMI − CMId +Ki

∫ t

0

(CMI − CMId)dt+

Kd
d(CMI − CMId)

dt

)
(6)

with the desired metabolic setpoint CMId, the proportional
constant Kp, the integral constant Ki, and the differential
constant Kd, with values of 1, 0.367, and 1.815, respectively.
Initial gains were obtained using a ’no-overshoot’ Zeigler-
nichols tuning, and tuned to give the desired response.

V. RESULTS & DISCUSSION
The results of the simulations are found in table 1 and in

Fig. 3. The maximum oxidative growth rate for the simulated
E. coli bioprocess was 0.27 h−1 and maximum biomass
yield of 126 g/L, seen in Table I under µmax. The desired
growth rates setpoints were set so that the TCA cycle could
process the extracellular acetate remaining from batch phase
while still achieving a high growth overall rate. Note that
the goal of these tests was to achieve the highest biomass
concentration using single setpoint control.

The highest average growth rate for the open loop con-
troller was 0.21 h−1, with a biomass production of 78 g/L.
With a high growth rate setpoint, it took almost 6 hours
for the extracellular acetate to be processed. Notice how the
CMI value rises above CMImid as the acetate concentration
rolls off in an exponential fashion, this shows the gradual
reduction of the acetate influence in suppressing the rate of
the TCA cycle. Once the acetate was processed, the TCA
cycle could run at its full rate and the substrate concentration
settled into a lower equilibrium . The metabolite consumption
metabolism stops and the CMI represents only the oxidative
metabolism.

The CMI controller attained the largest average growth
rate of 0.24 h−1 and yielded the largest biomass with a
value of 106 g/L. By controlling the CMI value to a setpoint
of 101% of CMImin, a high rate of oxidative metabolism
was maintained while still having room to process the
extracellular acetate. As the controller drives the CMI toward
CMId, it is giving glycolysis and pyruvate decarboxylation
more glucose to process, increasing the BAR to achieve the
desired CMI. This action ensures that the gap between the
current TCA rate and the desired TCA rate, as set by CMId,
is filled with glucose as the acetate diminishes. Note the
difference between the CMI profiles of the two controllers.

The results of the controller simulations demonstrated
that choosing a CMI value close to CMImin to control to
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Fig. 3. Simulation Results of PID CMI (solid,black) & Open Loop
(dashed,red) Controllers: A) Acetate B) Growth Rate C) CMI D)Substrate
(glucose) concentration.

yields 34% more biomass than an aggressively tuned open-
loop controller. Experimental verification of these results
would require numerous characterization runs and off-line
processing to find a best guess for the maximum growth
rate, µ1max; however, determining the control parameters,
CMImid and CMImin, for the CMI PID controller could be
found using only one experiment in which the CMI was
cycled through it’s entire range.

VI. CONCLUSION

In conclusion, this paper has presented a cell metabolic
indicator (CMI) which gives more insight into the cells’
metabolism than growth rate alone. Experimentally, the re-
sponse of the CMI indicated the three distinct metabolic
phases. The CMI consists of the ratio of two signals derived
from the outputs of sensors common to most bioreactor
systems. A bioprocess model was chosen that accurately
reflected the metabolic behavior of an E. coli bioprocess, and
uniquely augmented with the acid dynamics to allow for CMI
simulation. Experimental response of E. coli cultures showed
the CMI matched that seen in the simulated bioprocess,
tracking the metabolic states of the E. coli . The simulations
comparing a CMI controller with an open-loop controller
demonstrated that the CMI controller maintained a higher
growth rate yielding 34% more biomass. The fundamental
advantage of using CMI is that the ratio of the oxidative
metabolism to the total metabolism can be driven to a
desired setpoint, rather than a growth rate, which is the
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combination of the different metabolic phases and be difficult
to determine closely. CMImin is easier to identify empirically
than µ1max, a CMI-based controller can more reliably attain
maximum output. Effective implementation of a CMI-based
controller will rely on minimizing the time delay and phase
shift effects,caused by sensor dynamics and pH controller
dynamics in the OUR and BAR measurements. These effects
will be compensated by using appropriately designed state
estimators. Implementation of CMI-based control methods
should enable researchers to achieve higher yield over con-
servative open-loop growth profiles as well as cut down on
the characterization time of growth protocols. Many other
cells types besides E. coli exhibit behavior similar to that
characterized with the Xu model. The extension of the Xu+H

model to similar systems growing mammalian or pluripotent
stem cells could enable the similar high growth rate control
without excessive characterization.
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