
1

Safety-aware Adaptive Reinforcement Learning

with Applications to Brushbot Navigation
Motoya Ohnishi, Student Member, IEEE, Li Wang, Student Member, IEEE,

Gennaro Notomista, Student Member, IEEE, and Magnus Egerstedt, Fellow, IEEE

Abstract— This paper presents a safety-aware learning frame-
work that employs an adaptive model learning method together
with barrier certificates for systems with possibly nonstationary
agent dynamics. To extract the dynamic structure of the model,
we use a sparse optimization technique, and the resulting model
will be used in combination with control barrier certificates
which constrain feedback controllers only when safety is about
to be violated. Under some mild assumptions, solutions to the
constrained feedback-controller optimization are guaranteed to
be globally optimal, and the monotonic improvement of a feed-
back controller is thus ensured. In addition, we reformulate the
(action-)value function approximation to make any kernel-based
nonlinear function estimation method applicable. We then employ
a state-of-the-art kernel adaptive filtering technique for the
(action-)value function approximation. The resulting framework
is verified experimentally on a brushbot, whose dynamics is
unknown and highly complex.

Index Terms— Safe learning, control barrier certificate, sparse
optimization, kernel adaptive filtering, brushbot

I. INTRODUCTION

By exploring and interacting with an environment, rein-

forcement learning can successfully determine the optimal

feedback controller with respect to the long-term rewards

received by an agent [1], [2]. Whereas the idea of determining

the optimal feedback controller in terms of a cost over some

time horizon is standard in the controls literature [3], reinforce-

ment learning is aimed at learning the long-term rewards by

exploring the states and actions. As such, the agent dynamics is

no longer explicitly taken into account, but rather is subsumed

by the data. Moreover, even the rewards need not necessarily

be known a priori, but can be obtained through exploration,

as well.

If no information about the agent dynamics is available,

however, an agent might end up in certain regions of the state

space which must be avoided while exploring. Avoiding such

regions of the state space is referred to as safety. Safety in-

cludes collision avoidance, boundary-transgression avoidance,

connectivity maintenance in teams of mobile robots, and other

mandatory constraints, and this tension between exploration

This work of M. Ohnishi was supported by Scandinavia-Japan Sasakawa
Foundation.

M. Ohnishi is with the School of Electrical Engineering, KTH Royal
Institute of Technology, Stockholm, Sweden (e-mail: motoya@kth.se). L.
Wang and M. Egerstedt are with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, Atlanta, GA (e-mail:
liwang@gatech.edu; magnus@gatech.edu). G. Notomista is with the School
of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (e-
mail: g.notomista@gatech.edu).

and safety becomes particularly pronounced in robotics, where

safety is crucial.

In this paper, we address this safety issue, by employing

model learning in combination with barrier certificates. In

particular, we focus on learning for a system with discrete-

time nonstationary agent dynamics. Nonstationarity comes, for

example, from failures of actuators, battery degradations, or

sudden environmental disturbances. The result is a method that

adapts to a time-varying agent dynamics and simultaneously

extracts the dynamic structure without having to know how the

agent dynamics changes over time. The resulting model will

be used for barrier certificates. Moreover, certain conditions

are also presented under which the monotonic improvement

of a barrier-certified feedback controller is ensured.

Over the last decade, the safety issue has been addressed

under the name of safe learning, and plenty of solutions have

been proposed [4]–[13]. To ensure safety while exploring, an

initial knowledge of the agent dynamics, some safe maneuver

or their long-term rewards, or a teacher advising the agent

is necessary [4], [14]. To obtain a model of the agent dy-

namics, human operators may maneuver the agent and record

its trajectories [12], [15], or, starting from an initial safe

maneuver, the set of safe feedback controllers can be expanded

by exploring the states [4], [5]. It is also possible that an

agent continues exploring without entering the states with low

long-term rewards associated with some safe maneuver (e.g.

[16]). Due to the inherent uncertainty, the worst case scenario

(e.g. possible lowest rewards) is typically taken into account

when expanding the set of safe feedback controllers [13], [17].

To address the issue of this uncertainty for nonlinear-model

estimation tasks, Gaussian process regression [18] is a strong

tool, and many safe learning studies have taken advantage of

its property (e.g. [4], [6], [7], [10], [13]).

Nevertheless, when the agent dynamics is nonstationary, the

assumptions often made in the safe learning literature cannot

hold any more. In such cases, we need to adaptively learn

the agent dynamics to mitigate the effect of an unexpected

violation of safety. Moreover, when the agent dynamics varies,

the long-term rewards associated with states and controls also

vary. As such, the long-term rewards must also be learned in

an adaptive manner. These are the core motivations of this

paper.

To constrain the states within a desired safe region, we

employ control barrier functions (cf. [19]–[24]). When the

accurate model of the agent dynamics is available, control

barrier certificates ensure that an agent remains in the safe

states for all time by constraining the instantaneous control

2

input at each time, and that an agent outside of the safe states

is forced back to safety. A useful property of control barrier

certificates is its non-conservativeness, i.e., it modifies feed-

back controllers when violations of safety are truly imminent.

On the other hand, the global optimality of solutions to the

constrained feedback-controller optimization is necessary to

ensure the monotonic improvement of a feedback controller.

Our first contribution of this paper is to propose a discrete-time

control barrier certificate which ensures the global optimality

under some mild conditions. This is an improvement of the

previously proposed discrete-time control barrier certificate

[24], and hence has wider applicability.

To adaptively learn a nonlinear model of the agent dy-

namics, we employ kernel adaptive filtering [25], which is

an adaptive extension of the kernel ridge regression [26],

[27] or Gaussian processes. Multikernel adaptive filtering

(cf. [28]–[32]) is a state-of-the-art kernel adaptive filtering,

which adaptively achieves a compact representation of a

nonlinear function containing multi-component/partially-linear

functions, and has a monotone approximation property for a

possibly varying target function. Our second contribution of

this paper is to regard a model of the agent dynamics as

a combination of multiple structural components, and apply

multikernel adaptive filtering to simultaneously learn a model

and the dynamic structure. The key idea is the use of an

adaptive sparse optimization to extract truly active structural

components.

Lastly, the (action-)value function, which approximates the

long-term rewards, needs to be adaptively estimated under

nonstationarity. Therefore, we wish to fully exploit the non-

linear adaptive filtering techniques. Actually, many attempts

have been made to apply the online learning techniques

to reinforcement learning (see [33]–[38]). As a result, so-

called off-policy approaches, which are convergent even when

samples are not generated by the target feedback controller

(see [34]), have been proposed. However, what differentiates

the (action-)value function approximation from an ordinary

supervised learning, where input-output pairs are given, is that

the output of the true (action-)value function is not explicitly

observed. Our final contribution of this paper is, by assuming

deterministic agent dynamics, to appropriately reformulate the

(action-)value function approximation problem so that any

kernel-based learning, which is widely-studied nonparametric

technique, becomes straightforwardly applicable.

To test the efficacy, the proposed learning framework is

implemented on a brushbot, whose dynamics is unknown

and highly complex, and we conduct an experiment in the

real world. This is challenging due to many uncertainties and

lack of simulators often used in applications of reinforcement

learning to robotics (see [39] for reinforcement learning in

robotics).

II. BACKGROUND MATERIAL

We introduce notation, related works on safe learning, and

background material, including control barrier functions, and

kernel adaptive filtering.

A. Notation

Throughout, R, N, and N
∗ are the sets of real numbers,

nonnegative integers, and positive integers, respectively. Given

any pair of integers m,n ∈ N such that m ≤ n, we denote

the set {m,m+ 1, · · · , n} by m,n.

The state and the control input at time instance n ∈ N

are represented by xn ∈ X ⊂ R
nx , and un ∈ U ⊂ R

nu ,

where nx, nu ∈ N
∗, respectively. The functions R : X ×

U → R, V φ : X → R, and Qφ : X × U → R represent

the instantaneous-reward function, the value function, and the

action-value function associated with a feedback controller φ :
X → U , respectively. The estimate of a function ϕ at time

instance n is denoted by ϕ(n). We denote the discount factor

for the (action-)value function approximation by γ ∈ (0, 1).
The metric projection of a point x ∈ R

L onto a given

closed convex set C ⊂ R
L is defined by PC(x) :=

argminy∈C ‖x− y‖
RL . Let ‖·‖H be the norm induced by

the inner product 〈·, ·〉H in an inner-product space H. In

particular, define 〈x, y〉
RL := xTy for L-dimensional real

vectors x, y ∈ R
L, and ‖x‖

RL :=
√

〈x, x〉
RL , where (·)T

stands for transposition. The vector ei denotes the unit vector

with one at the ith position and zeros elsewhere. We denote

the null (zero) function by 0, and the empty set by ∅.

B. Related Work on Safe Learning

The primary focus of this paper is the safety issue while

exploring. Typically, some initial knowledges, such as an

initial safe controller and a model of the agent dynamics,

are required to address the safety issue while exploring, and

model learning is often employed together. In this section,

we introduce some related work on safe learning with model

learning, and present a brief summary of existing (action-

)value function approximation techniques.

1) Model Learning for Safe Maneuver: The recent work

in [13], [7], and [4] assume an initial conservative set of safe

controllers, which is gradually expanded as more data become

available. These approaches are designed for stationary agent

dynamics, and Gaussian processes are employed to obtain the

confidence interval of the model. To ensure safety, control

barrier functions and control Lyapunov functions are employed

in [13] and [4], respectively. On the other hand, the work

in [10] uses a trajectory optimization based on the receding

horizon control and model learning by Gaussian processes,

which is computationally expensive when the model is highly

nonlinear.

In contrast to these approaches, our approach considers a

possibly nonstationary agent dynamics and employs adaptive

model learning to adaptively estimate the time-varying set of

safe controllers.

2) (Action-)value Function Approximation: We introduce,

briefly, ideas of existing (action-)value function approxima-

tion techniques. The Bellman equation defines the temporal

difference error:

V φ(n)
(xn)− T φ(V φ(n)

(xn)), (1)

where T φ(V φ(n)
(xn)) := γV φ(n)

(xn+1) + R(xn, φ(xn)), at

time instance n + 1. Since the outputs of the value function

3

is not directly observed, supervised learning methods cannot

be directly applied. The update rule of the temporal difference

learning [40], [41] is given by

V φ(n+1)
(xn) = λ

[

T φ(V φ(n)
(xn))− V φ(n)

(xn)
]

,

where λ is the step size. Note that the output depends on the

current estimator of the value function in this update rule. On

the other hand, so-called off-policy methods (e.g. the residual

learning [33], the least squares temporal difference algorithm

[42], and the gradient temporal difference learning [34], [43])

have been also proposed. These approaches are proved to

converge under certain conditions as like most supervised

learning methods even when samples are not generated by the

controller φ. The least squares temporal difference algorithm

has been extended to kernel-based methods [37], including

Gaussian processes (e.g. Gaussian process temporal difference

and Gaussian process SARSA [35]).

Unlike these kernel-based methods, our approach explicitly

defines a so-called reproducing kernel Hilbert space so that

the (action-)value function approximation becomes an ordinary

kernel-based supervised learning, and that any kernel-based

method can be straightforwardly applied without modifying.

We refer the readers to [44] for a summary of parametric

value function approximation techniques.

C. Discrete-time Control Barrier Function

To avoid certain regions of the state space, we employ con-

trol barrier functions, which only modify feedback controllers

when safety is about to be violated. Define the set of safe

states C ⊂ X as

C := {x ∈ X|B(x) ≥ 0}, (2)

where B : X → R is called the discrete-time exponential

barrier function.

Definition 1 ([24, Definition 4]). A map B : X → R is

a discrete-time exponential control barrier function if there

exists a control input un ∈ U such that

B(xn+1)−B(xn) ≥ −ηB(xn), ∀n ∈ N, 0 < η ≤ 1.
(3)

Note that we intentionally removed the condition B(x0) ≥ 0
originally presented in [24, Definition 4]. Then, the forward

invariance and asymptotic stability of the set of safe states are

ensured by the following proposition.

Proposition 1. The set C defined in (2) for some discrete-time

exponential control barrier function B : X → R is forward

invariant when B(x0) ≥ 0, and is asymptotically stable when

B(x0) < 0.

Proof. See [24, Proposition 4] for the proof of forward invari-

ance. The set C ⊂ X is asymptotically stable as

lim
n→∞

B(xn) ≥ lim
n→∞

(1− η)nB(x0) = 0,

where the inequality holds from [24, Proposition 1].

Proposition 1 implies that an agent remains in the set of

safe states defined in (2) for all time if B(x0) ≥ 0 and (3)

are satisfied, and the agent outside of the set of safe states is

forced back to safety.

D. Multikernel Adaptive Filtering–Use of Sparse Optimization

As we will see later in Section III-A, barrier certified

controllers are efficiently computed when the agent dynamics

is affine to control inputs. Here, we introduce the idea of

multikernel adaptive filtering, which will be used to simultane-

ously learn a model and the dynamic structure. We emphasize

that one advantage of kernel-based methods is their convex-

analytic formulations.

Kernel adaptive filtering is a tool of nonlinear function

estimation. Due to its celebrated property of reproducing

kernels, the framework of linear adaptive filtering is directly

applied to nonlinear function estimation tasks in a possibly

infinite-dimensional functional space, namely a reproducing

kernel Hilbert space.

Definition 2 ([45, page 343]). Given a nonempty set Z and

H which is a Hilbert space defined in Z , the function κ (z, w)
of z, w ∈ Z is called a reproducing kernel of H if

1) for every w ∈ Z , κ (z, w) as a function of z ∈ Z belongs

to H, and

2) it has the reproducing property, i.e., the following holds

for every w ∈ Z and every ϕ ∈ H that

ϕ(w) = 〈ϕ, κ (·, w)〉H .

If H has a reproducing kernel, H is called a Reproducing

Kernel Hilbert Space (RKHS).

One of the celebrated examples of kernels is the Gaussian

kernel κ(z, w) :=
1

(2πσ2)L/2
exp

(

−‖z − w‖2
RL

2σ2

)

, z, w ∈

R
L, σ > 0. It is well-known that the Gaussian reproducing

kernel Hilbert space has universality [46], i.e, any continuous

function on every compact subset of RL can be approximated

with an arbitrary accuracy. Another widely used kernel is the

polynomial kernel κ(z, w) := (zTw + c)d, c ≥ 0, d ∈ N
∗.

Multikernel adaptive filtering [28] exploits multiple kernels

to conduct learning in the sum space of RKHSs associated

with each kernel. Let M ∈ N
∗ be the number of kernels

employed. Denote, by Dm,n := {κm(·, z̃m,j)}j∈1,rm,n
, m ∈

1,M, rm,n ∈ N
∗, the time-dependent set of functions, referred

to as a dictionary, at time instance n for the mth kernel

κm(·, ·). The current estimator ψ
(n)
n is evaluated at the current

input zn, in a linear form, as

ψ(n)
n (zn) := hT

nkn(zn) =
M
∑

m=1

hT

m,nkm,n(zn), (4)

where hn := [hT

1,n, h
T

2,n, · · · , hT

M,n]
T :=

[h1, h2, · · · , hrn] ∈ R
rn , rn :=

∑

m∈1,M rm,n,

is the coefficent vector, and kn(zn) :=
[

k1,n(zn)
T
k2,n(zn)

T · · · kM,n(zn)
T

]T

∈ R
rn , km,n(zn) :=

[

κm (zn, z̃m,1) , κm (zn, z̃m,2) , · · · , κm

(

zn, z̃m,rm,n

)]T ∈
R

rm,n . An illustrative example of an estimator is given

in Figure 1, where ψn is the unknown function to be

4

Fig. 1. An illustration of multikernel adaptive filtering. By employing
multiple kernel functions, a compact representation of the unknown function
ψn to be estimated is achieved. Gaussian kernels κm, m ∈ 1, 3, with different
scale parameters (i.e width) are employed in this example.

estimated at time instance n. To curve the growth of

dictionary sizes and obtain a compact representation

of the unknown function to be estimated, a sparse

optimization can be applied. Given an input-output pair

(zn, δn), zn ∈ R
L, δn ∈ R, at time instance n, define a closed

convex set Cℓ ⊂ R
rn , ℓ ∈ n− sn + 1, n ⊂ N, sn ∈ N

∗ as

Cℓ := {h ∈ R
rn ||hTkn(zℓ)− δℓ| ≤ ρ}, ρ ≥ 0, (5)

which is a set of coefficient vector h satisfying instantaneous-

error-zero with a precision parameter ρ. The cost for a sparse

optimization at time instance n is defined by

Θn(h) :=
1

2

n
∑

ℓ=n−sn+1

1

sn
dist2(h,Cℓ) + µ ‖h‖1 , (6)

where dist(h,Cℓ) := mina∈Cℓ
‖h− a‖

Rrn , and the ℓ1-norm

regularization ‖h‖1 :=
∑rn

i=1 |hi| with a parameter µ ≥ 0
promotes sparsity of h. The update rule of the adaptive

proximal forward-backward splitting [47], which is an adaptive

filtering designed for sparse optimizations, for the cost (6) is

given by

hn+1 = proxλµ

[

(1− λ)I + λ

n
∑

ℓ=n−sn+1

1

sn
PCℓ

]

(hn),

(7)

where λ ∈ (0, 2) is the step size, I is the identity operator,

and

proxλµ(h) =

rn
∑

i

sgn(hi)max {|hi| − λµ, 0}ei, (8)

where sgn(·) is the sign function. Then, the strictly

monotone approximation property [47]: ‖hn+1 − h∗
n‖Rrn <

‖hn − h∗
n‖Rrn , ∀h∗

n ∈ Ωn := argminh∈Rrn Θn(h), holds

if hn /∈ Ωn �= ∅. Under nonstationarity, this monotone

approximation property tells that, no matter how the target

vector(function) changes, we can at least guarantee that the

current estimator hn gets closer to the current target vector.

This property plays a key role in the safety-aware adaptive

reinforcement learning presented in Section III.

Assume that the dictionary is fixed for n ≥ N for some

N ∈ N, i.e., Dm,n = Dm,N , ∀n ≥ N, m ∈ 1,M , and

that Ω :=
⋂

n≥N Ωn is nonempty. Then, ‖hn+1 − h∗‖
R

rN <

Fig. 2. An illustration of monotone approximation property. The estimate hn

monotonically approaches to the set Ω of optimal vectors h∗ by sequentially
minimizing the distance between hn and Ωn.

‖hn − h∗‖
RrN

, ∀h∗ ∈ Ω, n ≥ N , holds if hn /∈ Ωn (see

[48] for detail). This is illustrated in Figure 2.

Dictionary Construction: By using sparse optimizations,

nonactive structural components represented by some kernel

functions are pruned, and the dictionary is refined as time goes

by. On the other hand, we employ two novelty conditions

when adding the kernel functions {κm(·, zn)}m∈1,M to the

dictionary: (i) the maximum-dictionary-size condition

rn ≤ rmax, rmax ∈ N
∗, (9)

i.e., the maximum dictionary size is rmax + M , and (ii) the

large-normalized-error condition

|δn − ψ(n)
n (zn)|2 > ǫ|ψ(n)

n (zn)|2, ǫ ≥ 0. (10)

In Section III-B, we apply multikernel adaptive filtering to

extract the dynamic structure of the agent dynamics.

III. SAFETY-AWARE ADAPTIVE REINFORCEMENT

LEARNING

In this section, we present a safety-aware adaptive rein-

forcement learning framework.Throughout, we consider the

following discrete-time deterministic nonlinear model of the

nonstationary agent dynamics,

xn+1 − xn = pn(xn, un) + fn(xn) + gn(xn)un, (11)

where pn : X×U → R
nx , fn : X → R

nx , gn : X → R
nx×nu .

Hereafter, we regard X×U as the same as Z ⊂ R
nx+nu under

the one-to-one correspondence between z := [xT, uT]T ∈ Z
and (x, u) ∈ X × U , if there is no confusion.

A. Safe Maneuver: Discrete-time Control Barrier Function

Given a discrete-time exponential control barrier function

B and 0 < η ≤ 1, the barrier certified safe control space at

time instance n is define as

Sn(x) := {un ∈ U|B(xn+1)−B(xn) ≥ −ηB(xn)}.
(12)

From Proposition 1, the set C defined in (2) is forward invariant

and asymptotically stable if un ∈ Sn(xn) for all n ∈ N
∗.

As pointed out in [24], Sn(xn) ⊂ U is not a convex set in

5

general. To ensure global optimality of the solutions to the

constrained feedback-controller optimization when updating a

feedback controller (see Section III-D), we make the following

moderate assumptions

Assumption 1. 1) Control-affine agent dynamics: The

agent dynamics is control affine, i.e., pn = 0.

2) Existence of Lipschitz continuous gradient of the barrier

function: Given

R := {(1− t)xn + t(fn(xn) + gn(xn)u)|t ∈ [0, 1], u ∈ U},
there exists a constant ν ≥ 0 such that the gradient of

the discrete-time exponential control barrier function B,

denoted by
∂B(x)
∂x , satisfies that

∥

∥

∥

∥

∂B(a)

∂x
− ∂B(b)

∂x

∥

∥

∥

∥

Rnx

≤ ν ‖a− b‖
Rnx , ∀a, b ∈ R.

Then, the following theorem holds.

Theorem 1. Under Assumptions 1.1 and 1.2, (3) is satisfied

if un satisfies the following:

∂B(xn)

∂x
(fn(xn) + gn(xn)un)

≥ −ηB(xn) +
ν

2
‖fn(xn) + gn(xn)un‖2Rnx . (13)

Moreover, (13) defines a convex constraint for un.

Proof. See Appendix A.

Theorem 1 essentially implies that, even when the gradient

of B along the shift of xn decreases steeply, (3) follows if

(13) is satisfied. From Theorem 1, the set Ŝn, defined as

Ŝn := {un ∈ U|∂B(xn)

∂x
(fn(xn) + gn(xn)un)

≥ −ηB(xn) +
ν

2
‖fn(xn) + gn(xn)un‖2Rnx} ⊂ Sn,

(14)

is convex.

As witnessed in the literatures (e.g. [22]), an agent might

encounter deadlock situations, where the constrained control

keeps the agent remain in the same state, when control barrier

certificates are employed. It is even possible that there is no

safe control driving the agent from those states. However, an

elaborative design of control barrier functions remedies this

issue, as shown in the following example.

Example 1. If the agent is nonholonomic, turning inward safe

regions when approaching their boundary might be infeasible.

To reduce the risk of such deadlock situations, control barrier

functions may be designed as

B(x) = B̃(x)− υΓ

(∣

∣

∣

∣

∣

θ − atan2

{

∂B̃(x)

∂y
,
∂B̃(x)

∂x

}∣

∣

∣

∣

∣

)

,

υ > 0,
(15)

where the state x = [x, y, θ] consists of the X position x, the

Y position y, and the orientation θ of an agent from the world

frame, {x ∈ X|B̃(x) ≥ 0} is the original safe region, and Γ
is a strictly increasing function. This control barrier function

Fig. 3. An illustration of how a nonholonomic agent avoids deadlocks.

When the orientation of the agent is not considered (i.e, B̃(x) is the barrier
function), there might be no safe control driving the agent from those states
as the left figure shows. By taking into account the orientation (i.e, B(x) is
the barrier function), the agent turns inward the safe region before reaching
its boundaries as the right figure shows.

forces the agent turn inward the original safe region before

reaching its boundaries.

An illustration of Example 1 is given in Figure 3.

B. Adaptive Model Learning–Capture Meaningful Structure

We have seen, in the previous subsection, that control-affine

models are desirable to obtain barrier certified controllers

efficiently. Here, we propose a model learning technique that

also learns the dynamic structure. We assume that nx = 1
for simplicity (we can employ nx estimators if nx > 1).

Define ψn(xn, un) := pn(xn, un)+fn(xn)+gn(xn)un, where

ψn : Z → R. We suppose that pn ∈ Hp, fn ∈ Hf , and

gn ∈ Hg , where Hp, Hf , and Hg are RKHSs, thereby being

able to employ kernel-based algorithms to learn a model.

However, because the domains of pn, fn, and gn are different,

learning of the function ψn is infeasible at this stage. Let

Hu be the RKHS associated with the reproducing kernel

κ (u, v) := uTv, u, v ∈ U , i.e a polynomial kernel with c = 0
and d = 1, and Hc := {ϕ : U → R|∃α ∈ R, ϕ(u) = α} =
span{1}, where 1 : U → {1}, the set of constant functions.

Proposition 2. The space Hc is an RKHS associated with

the reproducing kernel κ(u, v) = 1, ∀u, v ∈ U , with the inner

product defined as 〈α1, β1〉Hc
:= αβ, α, β ∈ R.

Proof. See Appendix B.

Then, the following proposition implies that ψn can be

approximated in the sum space of RKHSs defined later.

Proposition 3 ([49, Theorem 13]). Let H1 and H2 be

two RKHSs associated with the reproducing kernels κ1 and

κ2. Then the completion of the tensor product of H1 and

H2, denoted by H1 ⊗ H2, is an RKHS associated with the

reproducing kernel κ1 ⊗ κ2.

From Propositions 2 and 3, we can now assume that f̂n ∈
Hf ⊗Hc and ĝn ∈ Hg⊗Hu, where f̂n : Z → R, f̂n(x, u) :=
fn(x), and ĝn : Z → R, ĝn(x, u) := gn(x)u, respectively. As

such, ψn can be approximated in the RKHS Hψ := Hp +
Hf ⊗ Hc + Hg ⊗ Hu. By viewing the RKHS Hψ as a sum

space of M ∈ N
∗ RKHSs each of which is associated with the

reproducing kernel κm, m ∈ 1,M , the current estimator ψ
(n)
n

can be evaluated at the current input zn := [xT

n, u
T

n]
T ∈ Z as

in (4).

6

Algorithm 1 Adaptive Model Learning

Requirement: λ ∈ (0, 2), ρ ≥ 0 (precision parameter),

rmax > 0 (maximum-dictionary-size condition) ǫ ≥ 0
(large-normalized-error condition), µ ≥ 0 (sparsity parame-

ter), sn ∈ N
∗ (data size), x0 ∈ X , and u0 ∈ U

Initialization: D−
m,0 = ∅, hm,0 = [], m ∈ 1,M

Output:

p
(n)
n (zn), f

(n)
n (xn), and g

(n)
n (xn) ⊲ (16), (17), and (18)

for n ∈ N do

- Receive xn, xn+1 ∈ X and un ∈ U (δn := xn+1 − xn)

- Check if the novelty conditions are satisfied ⊲ (9), (10)

if Novelty conditions are satisfied then

Dictionary increment for m ∈ 1,M :

Dm,n = D−
m,n ∪ {κm(·, [xT

n, u
T

n]
T)}

Redefine hm,n as [hT

m,n, 0]
T

end if

Update hn ⊲ (5), (7), and (8)

Eliminate the obsolete dictionary elements for m ∈ 1,M :

D−
m,n+1 := {κm(·, z̃m,j) ∈ Dm,n|hT

m,n+1ej �= 0}
Discard the zero entries of hm,n+1

end for

Suppose that the RKHSs Hp, Hf , and Hg can be expressed

as the sum spaces of Mp,Mf ,Mg ∈ N
∗ RKHSs,where Mp +

Mf+Mg = M . The evaluations of the current estimators p
(n)
n

and f
(n)
n at the current inputs zn := [xT

n, u
T

n]
T and xn are then

given by

p(n)n (zn) =

Mp
∑

m=1

hT

m,nkm,n(zn), (16)

f (n)
n (xn) = f̂ (n)

n (zn) =

Mp+Mf
∑

m=Mp+1

hT

m,nkm,n(zn). (17)

In order to use the learned model in combination with control

barrier functions, each entry of the vector g
(n)
n (xn) (the current

estimate of gn(xn)) is required. Assume, without loss of

generality, that {ei}i∈1,nu
⊂ U (this is always possible for

U �= ∅ by transforming the coordinate of control inputs and

reduce the dimension nu if necessary). Then, the ith entry of

the vector g
(n)
n (xn) is given by

g(n)n (xn)ei = ĝ(n)n (xn, ei)

=

M
∑

m=Mp+Mf+1

hm,nkm,n([x
T

n, e
T

i]
T). (18)

The proposed model learning algorithm is summarized in

Algorithm 1. We conclude this subsection by giving the

following remarks.

Remark 1. The following theorem ensures that ψn can be

uniquely decomposed into pn, f̂n, and ĝn.

Theorem 2. Assume that X and U have nonempty interiors.

Assume also that Hp is a Gaussian RKHS. Then, Hψ is the

direct sum of Hp, Hf ⊗Hc, and Hg⊗Hu, i.e, the intersection

of any two of the RKHSs Hp, Hf ⊗Hc, and Hg ⊗Hu is {0}.

Proof. See Appendix C.

In most of the kernel-based methods such as Gaussian pro-

cesses and the kernel recursive least mean squares algorithm

[50], tractability of the inner product between kernel functions

is an essential property (e.g. for computing the Gram matrix).

In a sum space of RKHSs, the inner product has no closed form

in general. Nevertheless, from Theorem 2, the inner product

is computed as

〈ψ1, ψ2〉Hψ

= 〈p1, p2〉Hp
+
〈

f̂1, f̂2

〉

Hf⊗Hc

+ 〈ĝ1, ĝ2〉Hg⊗Hu
,

ψi := pi + f̂i + ĝi ∈ Hψ, i ∈ 1, 2.

Remark 2. By using a sparse optimization for the coefficient

vector hn ∈ R
rn , we wish to extract a structure of the

model. In the present study, the term p
(n)
n is desired to be

dropped off, when the true agent dynamics is control affine.

To effectively achieve a compact representation of the model, it

might be required to appropriately weigh the kernel functions

to include some preferences on a structure of the model. The

following proposition implies that the resulting kernels are still

reproducing kernels.

Proposition 4 ([29, Theorem 2]). Let κ : Z × Z → R

be the reproducing kernel of an RKHS (H, 〈·, ·〉H). Then,

τκ(z, w), z, w ∈ Z for arbitrary τ > 0 is the reproducing

kernel of the RKHS (Hτ , 〈·, ·〉Hτ
) with the inner product

〈z, w〉Hτ
:= τ−1 〈z, w〉H , z, w ∈ Z .

C. Adaptive Reinforcement Learning

We reformulate the (action-)value function approximation

problem to enable to directly apply any kernel-based method,

including multikernel adaptive filtering. The Bellman equation

of a feedback controller φ : X → U for the value function

is given in (1). Assume the target feedback controller φ is

deterministic, and let HV be an RKHS containing the value

function V φ. By slightly modifying (1), we obtain

V φ
n (xn)− γV φ

n (xn+1) = Rn(xn, φ(xn)), (19)

where the value function and the instantaneous-reward func-

tion are now time-dependent. Define a function ψn : X 2 → R,

where R
2nx ⊃ X 2 = X × X , as

ψn([x
T, yT]T) := V φ

n (x)− γV φ
n (y), ∀x, y ∈ X . (20)

Then, (19) is reformulated as

ψn([x
T

n, x
T

n+1]
T) = Rn(xn, φ(xn)).

As such, solving the Bellman equation comes down to the

iterative nonlinear function estimation with the input-output

pairs {([xT

n, x
T

n+1]
T, Rn(xn, φ(xn)))}n∈N. In the case of the

action-value function, the Bellman equation of a feedback

controller φ : X → U is given by

Qφ
n(xn, un) = γQφ

n(xn+1, φ(xn+1)) +Rn(xn, un),
(21)

where Qφ
n ∈ HQ denotes the true action-value function with

respect to φ, contained in an RKHS HQ, at time instance n.

7

By defining a function ψn : Z2 → R, where R
2(nx+nu) ⊃

Z2 = Z × Z , as

ψn([x
T, uT, yT, vT]T) := Qφ

n(x, u)− γQφ
n(y, v),

x, y ∈ X , u, v ∈ U ,
the Bellman equation in (21) is solved via iterative

nonlinear function estimation with the input-output pairs

{([xT

n, u
T

n, x
T

n+1, φ(xn+1)
T]T, Rn(xn, un))}n∈N.

Theorem 3. Suppose that HQ is an RKHS associated with

the reproducing kernel κQ(·, ·) : Z × Z → R. Then,

Hψ := {ϕ|ϕ([zT, wT]T) = ϕQ(z)− γϕQ(w), γ ∈ (0, 1)

ϕQ ∈ HQ, z, w ∈ Z},
is also an RKHS with the inner product defined by

〈ϕ1, ϕ2〉Hψ
:=

〈

ϕQ
1 , ϕ

Q
2

〉

HQ

, (22)

ϕi([z
T, wT]T) := ϕQ

i (z)− γϕQ
i (w), ∀z, w ∈ Z, i ∈ 1, 2.

The reproducing kernel of the RKHS Hψ is given by

κ([zT, wT]T, [z̃T, w̃T]T)

:=
(

κQ(z, z̃)− γκQ(z, w̃)
)

− γ
(

κQ(w, z̃)− γκQ(w, w̃)
)

, z, w, z̃, w̃ ∈ Z.

Proof. See Appendix D.

From Theorem 3, any kernel-based method can be ap-

plied by assuming that ψn ∈ Hψ. Suppose that multikernel

adaptive filtering is employed. Given a sum space of M
RKHSs each of which is associated with the reproducing

kernel κQ
m, m ∈ 1,M , we define the reproducing ker-

nels κm([zT, wT]T, [z̃T, w̃T]T) :=
(

κQ
m(z, z̃)− γκQ

m(z, w̃)
)

−
γ
(

κQ
m(w, z̃)− γκQ

m(w, w̃)
)

, m ∈ 1,M , and their corre-

sponding RKHSs as in Theorem 3. Provided the dictionaries

Dm,n := {κm(·, [z̃Tm,j , w̃
T

m,j]
T)}j∈1,rm,n

, m ∈ 1,M , the

estimator ψ
(n)
n is then expressed as

ψ(n)
n ([zT, wT]T) := hT

nkn([z
T, wT]T)

=

M
∑

m=1

hT

m,nkm,n([z
T, wT]T), z, w ∈ Z, (23)

where km,n([z
T, wT]T)Tej :=

κm

(

[zT, wT]T, [z̃Tm,j, w̃
T

m,j]
T
)

, j ∈ 1, rm,n, from which

we obtain the estimator of the action-value function

Qφ
n
(n) ∈ HQ as

Qφ
n

(n)
(z) := hT

nk
Q
n (z) =

M
∑

m=1

hT

m,nk
Q
m,n(z), (24)

where kQn (z) :=
[

kQ1,n(z)
T

kQ2,n(z)
T · · · kQM,n(z)

T
]T

∈ R
rn ,

and kQm,n(z)
Tej := κQ

m

(

z, z̃Tm,j

)

− γκQ
m (z, w̃m,j) , j ∈

1, rm,n.

Resulting action-value function approximation algorithm is

summarized in Algorithm 2.

Remark 3. Employing the action-value function enables to

use random control inputs instead of the target feedback

controller φ for exploration.

Algorithm 2 Adaptive Action-value Function Approximation

Algorithm

Requirement: Assumption 1, κQ
m defined in (26), λ ∈

(0, 2), ρ ≥ 0 (precision parameter), rmax > 0 (maximum-

dictionary-size condition) ǫ ≥ 0 (large-normalized-error

condition), µ ≥ 0 (sparsity parameter), sn ∈ N
∗ (data size),

x0 ∈ X and u0 ∈ U
Initialization: D−

m,0 = ∅, hm,0 = [], m ∈ 1,M

Output: Qφ
n
(n)

(zn) ⊲ (24)

for n ∈ N do

- Receive xn, xn+1 ∈ X , and δn := Rn(xn, un) ∈ R

- Obtain φ(xn+1) ∈ Ŝn(xn+1) ⊲ Algorithm 3

if Random Exploration then

Generate random control input un+1 ∈ Ŝn(xn+1)
⊲ Algorithm 1, Theorem 1

else

un+1 = φ(xn+1) ⊲ Algorithm 3

end if

- Check if the novelty conditions are satisfied ⊲ (9), (10)

if Novelty conditions are satisfied then

Dictionary increment for m ∈ 1,M :

Dm,n = D−
m,n ∪ {κm(·, [xT

n, u
T

n, x
T

n+1, φ(xn+1)
T]T)}

Redefine hm,n as [hT

m,n, 0]
T

end if

Update hn ⊲ (5), (7), and (8)

Eliminate the obsolete dictionary elements for m ∈ 1,M :

D−
m,n+1

:= {κm(·, [z̃Tm,j, w̃
T

m,j]
T) ∈ Dm,n|hT

m,n+1ej �= 0}
Discard the zero entries of hm,n+1

end for

Remark 4. When the coefficient vector hn for the estimator

ψ
(n)
n in (23) is monotonically approaching to a optimal point

h∗ in the Euclidean norm sense, so is the coefficient vector

for the (action-)value function because the same coefficient

vector is used to estimate ψn and Qφ
n (see (23) and (24)).

Suppose we employ a method in which ψ
(n)
n is monotonically

approaching to a optimal function ψ∗
n in the Hilbertian norm

sense. Then, the following corollary implies that an estimator

of the action-value function also satisfies the monotonicity.

Corollary 1. Let Hψ ∋ ψ
(n)
n (z, w) := Qφ

n
(n)

(z)−γQφ
n
(n)

(w)
and Hψ ∋ ψ∗

n(z, w) := Qφ
n
∗
(z)−γQφ

n
∗
(w), z, w ∈ Z , where

Qφ
n
(n)

, Qφ
n
∗ ∈ HQ. Then, if ψ

(n)
n is approaching to ψ∗

n in the

Hilbertian norm sense, i.e.,
∥

∥

∥
ψ(n+1)
n − ψ∗

n

∥

∥

∥

Hψ

≤
∥

∥

∥
ψ(n)
n − ψ∗

n

∥

∥

∥

Hψ

,

it holds that
∥

∥

∥
Qφ

n

(n+1) −Qφ
n

∗∥
∥

∥

HQ

≤
∥

∥

∥
Qφ

n

(n) −Qφ
n

∗∥
∥

∥

HQ

.

Proof. See Appendix E.

D. Safety-aware Feedback-controller Update

Given current feedback controller φ : X → U , assume that

the action-value function Qφ
n with respect to φ at time instance

8

Algorithm 3 Feedback-controller Update

Requirement: Assumption 1, Nf ∈ N
∗ (update frequency)

Initialization: φ = 0
for n ∈ N do

if n mod Nf = 0 then

Update φ ⊲ (27), Algorithm 1, and Theorem 1

φ = φ+

end if

end for

n is available. Then, the feedback controller φ+ given by

φ+(x) := argmax
u∈Ŝn(x)

[

Qφ
n(x, u)

]

, (25)

where Ŝn(x) ⊂ U is defined in (14), is well-known (e.g.

[51]) to satisfy that Qφ
n(x, φ(x)) ≤ Qφ+

n (x, φ+(x)), where

Qφ+

n is the action-value function with respect to φ+ at time

instance n. In practice, we use the estimator of Qφ
n because

the exact function Qφ
n is unavailable. For example, the action-

value function is estimated over Nf ∈ N
∗ iterations, and

the feedback controller is updated every Nf iterations. To

obtain analytical solutions for (25), we follow the arguments

in [35]. Suppose that Qφ
n
(n)

is given by (24). We define the

reproducing kernel κQ
m, m ∈ 1,M as the tensor kernel given

by

κQ
m([xT, uT]T, [yT, vT]T) := κx

m(x, y)κu
m(u, v), (26)

where κu
m(u, v) is, for example, defined by

κu
m(u, v) := 1 +

1

4
(uTv).

Then, (25) becomes

φ+(x) := argmax
u∈Ŝn(x)

[

hT

nk
Q
n ([x

T, uT]T)
]

, (27)

where the target value being maximized is linear to u at

x. Therefore, convexity of the set Ŝn(x) ⊂ U implies that

an optimal solution to (27) is guaranteed to be globally

optimal, ensuring the monotonic improvement of the feedback

controller.

The proposed feedback-controller update is summarized in

Algorithm 3, where mod stands for the modulo operation.

IV. EXPERIMENTAL RESULTS

The proposed learning framework is implemented on a

brushbot, which has highly nonlinear, nonholonomic, and

complex dynamics (see Figure 4). The objective of this ex-

periment is to find a feedback controller driving the brushbot

to the origin, while restricting the region of exploration.

The experiment is conducted at the Robotarium, a remotely

accessible robot testbed at Georgia institute of technology [52].

A. Experimental Condition

The experimental conditions for model learning, reinforce-

ment learning, control barrier functions, and their parameter

settings are presented below.

Brush

Motor

Brush

Fig. 4. A picture of the brushbot used in the experiment. Vibrations of the
two motors propagate to the two brushes, driving the brushbot. Control inputs
are of two dimension each of which corresponds to the rotational speed of a
motor.

1) Model learning: The state x = [x, y, θ]T consists of the

X position x, Y position y, and the orientation θ ∈ [−π, π] of

the brushbot from the world frame. The exact positions and the

orientation are recorded by a motion capture system every 0.3
second. A control input u is of two dimension each of which

corresponds to the rotational speed of a motor. To improve the

learning efficiency and reduce the total learning time required,

we identify the most significant dimension and reduce the

dimensions to learn. The sole input variable of pn, fn, and

gn, for the shifts of x and y, is assumed to be θ, and the

shift of θ is assumed to be constant over the state, and hence

depends on nothing but control inputs (see Section IV-A.4).

The brushbot used in the present study is nonholonomic, i.e., it

can only go forward, and positive control inputs basically drive

the brushbot in the same way as negative control inputs. As

such, we use the rotational speeds of the motors as the control

inputs Moreover, to eliminate the effect of static frictions on

the model, we assume that the zero control input given to the

algorithm actually generate some minimum control inputs uδ

to the motors, i.e., the actual maximum control inputs to the

motors are given by umax + uδ, where umax is the maximum

control input fed to the algorithm.

2) Reinforcement learning: The state for the action-value

function approximation consists of the distance
∥

∥[x, y]T
∥

∥

R2

from the origin and the orientation θ. The instantaneous reward

is given by

Rn(x, u) = −
∥

∥[x, y]T
∥

∥

2

R2 + 2, ∀n ∈ N (28)

where the constant is added to prevent the resulting value of

explored states from becoming negative, i.e lower than the

9

value outside of the region of exploration.

3) Discrete-time control barrier certificate: Control barrier

certificates are used to limit the region of exploration to a

recutangular area: x ∈ [−xmax, xmax], y ∈ [−ymax, ymax],
where xmax > 0 and ymax > 0. Because the brushbot can only

go forward, we employ the following four barrier functions:

B1(x) = xmax − x− υ |θ + π| ,
B2(x) = x + xmax − υ |θ| ,
B3(x) = ymax − y− υ

∣

∣

∣
θ +

π

2

∣

∣

∣
,

B4(x) = y + ymax − υ
∣

∣

∣
θ − π

2

∣

∣

∣
,

(see Example 1). Note that those functions satisfy Assumption

1.2 and the Lipschitz constant ν is zero except at around θ =
−π

2 , 0,
π
2 , π.

4) Parameter settings: The parameter setting is summa-

rized in Table I. Five Gaussian kernels with different scale

parameters σ are employed in the action-value function ap-

proximation (i.e, M = 5), and six Gaussian kernels are

employed in model learning for x and y (i.e, Mp = Mf =
Mg = 6). In model learning for θ, we define Hp := {ϕ : Z →
R|∃α ∈ R, ϕ(z) = α} and Hf = Hg := {ϕ : X → R|∃α ∈
R, ϕ(x) = α} (i.e, Mp = Mf = Mg = 1).

The kernels of Hp and Hf are weighed by τ = 0.1 in model

learning (see Remark 2).

5) Procedure: The time interval (duration of one iteration)

for learning is 0.3 seconds, and random explorations are

conducted for the first 300 seconds corresponding to 1000
iterations. While exploring, the model learning algorithm

adaptively learns a model whose control-affine terms, i.e.

fn(x) + gn(x)u, is used in combination with barrier certifi-

cates. Although barrier functions employed in the experiment

reduce deadlock situations, the brushbot is forced to turn

inward the region of exploration when a deadlock is detected.

Note that the barrier certificates are intentionally violated in

such a case. The feedback controller is updated every 50
seconds. After 300 seconds, we stop learning a model and

the action-value function, and the feedback controller replaces

random explorations. The brushbot is forced to stop when it

enters into the circle of radius 0.2 centered at the origin. When

the brushbot is driven close to the origin and enters this circle,

it is pushed away from the origin to see if it returns to the

origin again (see Figure 10).

B. Results

Figure 5 plots p
(n)
n ([xT, [0, 0]]T), f

(n)
n (x), and

g
(n)
n (x)ei, i ∈ 1, 2, for x and y at n = 1000. Recall

that these functions only depend on θ in this experiment

to improve the learning efficiency. For the shift of θ, the

estimators are constant over the state (see Section IV-A.1),

and the result is g
(n)
n (x)e1 = 1.38, g

(n)
n (x)e2 = −0.77, and

p
(n)
n ([xT, [0, 0]]T) = f

(n)
n (x) = 0 at n = 1000. As can be

seen in Figure 5, p
(n)
n ([xT, [0, 0]T]T) is almost zero and so is

f
(n)
n (x), implying that the proposed algorithm successfully

drops off irrelevant structural components of a model.

Figure 6 plots the trajectory of the brushbot while exploring

(i.e. X,Y positions from n = 0 to n = 1000). It is observed

TABLE I

SUMMARY OF THE PARAMETER SETTINGS

General Setting

(Parameter) (Description) (Value)

xmax maximum X position 1.2
ymax maximum Y position 1.2
η Barrier-function parameter 0.1
υ coefficient in barrier functions 0.1
uδ actual minimum control 0.4

umax maximum control input 0.623

Model Learning for x and y

(Parameter) (Description) (Value)

λ step size 0.3
sn data size 5
µ regularization parameter 0.0001
ρ precision parameter 0.001
ǫ large-normalized-error 0.1

rmax maximum-dictionary-size 500
σ scale parameters {10, 5, 2, 1, 0.5, 0.2}

Model Learning for θ

(Parameter) (Description) (Value)

λ step size 0.03
sn data size 10
µ regularization parameter 0
ρ precision parameter 0.01
ǫ large-normalized-error 0.1

rmax maximum-dictionary-size 3

Action-value Function Approximation

(Parameter) (Description) (Value)

λ step size 0.3
sn data size 10
µ regularization parameter 0.0001
ρ precision parameter 0.05
ǫ large-normalized-error 0.1

rmax maximum-dictionary-size 2000
γ discount factor 0.95
σ scale parameters {10, 5, 2, 1, 0.5}

that the brushbot remains in the region of exploration (x ∈
[−1.2, 1.2] and y ∈ [−1.2, 1.2]) most of the time. Moreover,

the values of barrier functions Bi, i ∈ 1, 4, for the whole

trajectory are plotted in Figure 7. Even though some violations

of safety are seen in the figure, the brushbot returns to the safe

region before large violations occur. Despite unknown, highly

complex and possibly nonstationary system, the proposed

safety-aware learning framework is shown to work efficiently.

Figure 8 plots the trajectories of the optimal feedback

controller learned by the brushbot. Once the optimal feed-

back controller replaces random explorations, the brushbot

returns to the origin until n = 1016 as the first figure

shows. The brushbot is pushed by a sweeper at time in-

stance n = 1031, 1075, 1101, 1128, 1181, and n = 1230,

and the trajectories of the brushbot after being pushed at

n = 1031, 1075, 1101 are also shown in Figure 8. Dashed

lines in the last figure indicates the time when the brushbot is

pushed away. Given relatively short learning time and that no

simulator is used, the brushbot learns the desirable behavior

sufficiently well.

Figure 9 plots the shape of

Qφ
n
(n)

(

[
∥

∥[x, y]T
∥

∥

R2 , θ
]T

, [0, 0]T
)

over X,Y positions at

n = 1000. It is observed that when the control input is zero

(i.e., when the brushbot basically does not move), the vicinity

10

-3 -2 -1 0 1 2 3

 (rad)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

O
u
tp

u
t

g
(n)
n (x)e1 for x

g
(n)
n (x)e2 for x

g
(n)
n (x)e1 for y

g
(n)
n (x)e2 for y

p
(n)
n ([xT, [0, 0]]T) for x

p
(n)
n ([xT, [0, 0]]T) for y

f
(n)
n (x) for x and y

Fig. 5. Estimated output of the model estimator at u = [0, 0]T and n = 1000 over the orientation θ. Irrelevant structures such as p
(n)
n and f

(n)
n dropped

off successfully.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
n = 0

n = 1000

x

y

0 200 400 600 800 1000
-1.5

-1

-0.5

0

0.5

1

1.5

Iteration

P
o
si

ti
o
n

X position Y position

Fig. 6. The left figure shows the trajectory of the brushbot while exploring, and the right figure shows X,Y positions over iterations. The region of exploration
is limited to x ∈ [−1.2, 1.2] and y ∈ [−1.2, 1.2]. The brushbot remains in the region most of the time.

0 200 400 600 800 1000 1200
-0.5

0

0.5

1

1.5

2

2.5

Iteration

V
al

u
es

o
f

b
ar

ri
er

fu
n
ct

io
n
s

B1(x) B2(x) B3(x)B4(x)

Fig. 7. The values of four control barrier functions employed in the experiment for the whole trajectory. Even though some violations of safety are seen, the
brushbot returns to the safe region before large violations occur. The nonholonomic brushbot adaptively learns a model and how to turn inward the region of
exploration before reaching the boundaries of the region of exploration.

of the origin has the highest value, which is reasonable.

Finally, Figure 10 shows two trajectories of the brushbot

returning to the origin by using the action-value function saved

at n = 1000. After being pushed away from the origin, the

brushbot successfully returns to the origin again.

11

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

n = 1000

n = 1016

x

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

n = 1035

n = 1054

x

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

n = 1078

n = 1085

x

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

n = 1103

n = 1111

x

y

1000 1050 1100 1150 1200 1250
-1.5

-1

-0.5

0

0.5

1

1.5

Iteration

P
o
si

ti
o
n

X position Y position

Fig. 8. Trajectories of the optimal feedback controller learned by the brushbot. The optimal feedback controller replaces random explorations at n = 1000,
and the brushbot returns to the origin until n = 1016 (first figure). The brushbot is pushed by a sweeper at time instance n = 1031, 1075, 1101, 1128, 1181,
and n = 1230. Dashed lines in the last figure indicates the time when the brushbot is pushed away. The brushbot learns the desirable behavior sufficiently
well.

5

10

1 1.5

15

1
0.50

20

0
-0.5-1 -1

-1.5 xy

Fig. 9. The shape of the action-value function over X,Y positions at the
control input u = 0 and n = 1000. The vicinity of the origin has the highest
value when the control input is zero.

C. Discussion

One of the challenges of the experiment is that no initial

data or simulators are available. Despite the fact that the

brushbot with highly complex system has to learn an optimal

controller while dealing with safety by employing adaptive

model learning, the proposed learning framework works well

in the real world. If some initial data or knowledges about

a model are available, it is also possible to combine the

proposed framework with other methods designed for sta-

tionary dynamics. For model learning and the action-value

function approximation, multikernel adaptive filtering might

be replaced by other kernel-based methods as well.

V. CONCLUSION

The learning framework presented in this paper success-

fully tied model learning, reinforcement learning, and bar-

rier certificates, enabling safety-aware reinforcement learning

for unknown, highly nonlinear, nonholonomic, and possibly

nonstationary agent dynamics. The proposed model learning

algorithm is able to capture a structure of the agent dynamics

by employing a sparse optimization. The resulting model has

preferable structure for preserving efficient computations of

barrier certificates. A set of mild conditions ensuring convexity

of the barrier certified safe control space is presented. Convex-

ity of the safe control space and an appropriate design of kernel

functions for the action-value function guarantee the global op-

timality of solutions to the feedback-controller update, which

ensures the monotonic improvement of a feedback controller.

In addition, the (action-)value function approximation problem

is appropriately reformulated so that kernel-based methods

including multikernel adaptive filtering can be directly applied.

The experimental result shows the efficacy of the proposed

learning framework in the real world.

12

Fig. 10. Two trajectories of the brushbot returning to the origin by using the action-value function saved at n = 1000. Red arrows show the trajectories.
After being pushed away from the origin, the brushbot successfully returns to the origin again.

APPENDIX A

PROOF OF THEOREM 1

The line integral of
∂B(x)
∂x is path independent because

it is the gradient of the scaler field B [53]. Let x(t) :=
(1 − t)xn + txn+1 = xn + t(fn(xn) + gn(xn)un), where

t ∈ [0, 1] parameterizes the line path between xn and xn+1,

then
dB(x(t))

dt = ∂B(x(t))
∂x (fn(xn) + gn(xn)un). Therefore, for

any path A from xn to xn+1, it holds that

B(xn+1)−B(xn) =

∫

A

∂B(x)

∂x
· dx =

∫ 1

0

dB(x(t))

dt
dt

≥
∫ 1

0

(

∂B(xn)

∂x
− νt(fn(xn) + gn(xn)un)

T

)

(fn(xn) + gn(xn)un)dt

=
∂B(xn)

∂x
(fn(xn) + gn(xn)un)

− ν

2
‖fn(xn) + gn(xn)un‖2Rnx . (A.1)

The inequality implies that B(xn+1)−B(xn) is greater than

or equal to that in the case when
∂B(x)
∂x decrease along the

line path at the maximum rate. When (13) is satisfied, it holds

from (A.1) that

B(xn+1)−B(xn) ≥ −ηB(xn),

which is the discrete-time exponential control barrier certifi-

cate defined in (3). Equation (13) can be rewritten as

∂B(xn)

∂x
(fn(xn) + gn(xn)un)

− ν

2
‖fn(xn) + gn(xn)un‖2Rnx ≥ −ηB(xn). (A.2)

The first term in the left hand side of (A.2) is affine to un,

the second term is the combination of a concave function

− ν
2 ‖·‖

2
Rnx and an affine function of un, which is concave.

Therefore, the left hand side of (A.2) is a concave function,

and the inequality (A.2) defines a convex constraint.

APPENDIX B

PROOF OF PROPOSITION 2

Since κ(u, v) = 1(u) = 1, ∀u, v ∈ U is a positive definite

kernel, it defines the unique RKHS given by span{1}, which is

complete because it is a finite-dimensional space. For any ϕ :=
α1 ∈ Hc, 〈ϕ, ϕ〉Hc

= α2 ≥ 0 and the equality holds if and

only if α = 0, or equivalently, ϕ = 0. The symmetry and the

linearity also hold, and hence 〈·, ·〉Hc
defines the inner product.

For any u ∈ U , it holds that 〈ϕ, κ(·, u)〉Hu
= 〈α1,1〉Hu

=
α = ϕ(u). Therefore, the reproducing property is satisfied.

APPENDIX C

PROOF OF THEOREM 2

The following lemmas are used to prove the theorem.

Lemma 1 ([54, Theorem 2]). Let X ⊂ R
nx be any set

with nonempty interior. Then, the RKHS associated with the

Gaussian kernel for an arbitrary scale parameter σ > 0
does not contain any polynomial on X , including the nonzero

constant function.

Lemma 2. Assume that X ⊂ R
nx and U ⊂ R

nu have

nonempty interiors. Then, the intersection of the RKHS Hu

associated with the kernel κ (u, v) := uTv, u, v ∈ U , and the

RKHS Hc := {ϕ : U → R|∃α ∈ R, ϕ(u) = α} is {0}, i.e.

Hc ∩Hu = {0}.
Proof. It is obvious that the function ϕ(u) = 0, ∀u ∈ U is

an element of both of the RKHSs (vector spaces) Hu and

Hc. Therefore, it is enough to show that there exists u ∈ U
satisfying that ϕ(u) �= ϕ(uint), uint ∈ int(U), where int(U)

13

denotes the interior of U , for any ϕ ∈ Hu \ {0}. Assume that

ϕ(v) �= 0 for some v ∈ U . From [49, Theorem 3], the RKHS

Hu is expressed as Hu = span{κ (·, u)}u∈U , which is finite

dimension, implying that any function in Hu is linear. Since

there exists u = uint + ̺v ∈ U for some ̺ > 0, it is proved

that

ϕ(u) = ϕ(uint + ̺v) = ϕ(uint) + ̺ϕ(v) �= ϕ(uint).

Lemma 3 ([55, Proposition 1.3]). Given vector spaces H1

and H2. If H2 = H21 ⊕H22, then

H1 ⊗H21 ∩H1 ⊗H22 = {0},

i.e,

H1 ⊗H2 = (H1 ⊗H21)⊕ (H1 ⊗H22).

Lemma 4. Given X ⊂ R
nx and U ⊂ R

nu , let H1,

H2, and H be associated with the Gaussian kernels

κ1(x, y) := 1
(
√
2πσ)nx

exp
(

− ‖x−y‖2
Rnx

2σ2

)

, x, y ∈ X ,

κ2(u, v) := 1
(
√
2πσ)nu

exp
(

− ‖u−v‖2
Rnu

2σ2

)

, u, v ∈
U , and κ([xT, uT]T, [yT, vT]T) :=

1
(
√
2πσ)nx+nu

exp

(

−‖[xT,uT]T−[yT,vT]T‖2

Rnx+nu

2σ2

)

, x, y ∈
X , u, v ∈ U , respectively, for an arbitrary σ > 0. Then, by

regarding a function in H1 ⊗H2 as a function over the input

space X × U ⊂ R
nx+nu , it holds that

H = H1 ⊗H2.

Proof. H1 ⊗H2 has the reproducing kernel defined by

κ⊗([x
T, uT]T, [yT, vT]T) := κ1(x, y)κ2(u, v)

=
1

(
√
2πσ)nx(

√
2πσ)nu

exp

(

−‖x− y‖2
Rnx

2σ2

)

exp

(

−‖u− v‖2
Rnu

2σ2

)

=
1

(
√
2πσ)nx+nu

exp

(

−‖x− y‖2
Rnx + ‖u− v‖2

Rnu

2σ2

)

= κ([xT, uT]T, [yT, vT]T).

This verifies the claim.

We are now ready to prove Theorem 2.

Proof of Theorem 2. By Lemmas 2 and 3, it is derived that

Hf ⊗Hc ∩Hg ⊗Hu = {0}. By Lemmas 1, 3, and 4, it holds

that Hp ∩Hf ⊗Hc = {0} and Hp ∩Hg ⊗Hu = {0}.

APPENDIX D

PROOF OF THEOREM 3

We show that the operator U : HQ → Hψ , which maps

ϕQ ∈ HQ to a function ϕ ∈ Hψ, ϕ([z
T, wT]T) = ϕQ(z) −

γϕQ(w) where γ ∈ (0, 1), z, w ∈ Z , is bijective. First, for

any ϕQ
1 , ϕ

Q
2 ∈ HQ,

U(ϕQ
1 + ϕQ

2)([z
T, wT]T)

= (ϕQ
1 + ϕQ

2)(z)− γ(ϕQ
1 + ϕQ

2)(w)

= (ϕQ
1 (z)− γϕQ

1 (w)) + (ϕQ
2 (z)− γϕQ

2 (w))

= U(ϕQ
1)([z

T, wT]T) + U(ϕQ
2)([z

T, wT]T), ∀z, w ∈ Z,

and

U(αϕQ
1)([z

T, wT]T)

= αϕQ
1 (z)− γαϕQ

1 (w) = α(ϕQ
1 (z)− γϕQ

1 (w))

= αU(ϕQ
1)([z

T, wT]T), ∀α ∈ R, ∀z, w ∈ Z,

from which the linearity holds. Second, the mapping U is

surjective by definition. Therefore, it is enough to show that

ker(U) = 0 [56]. This is shown in the following.

U(ϕQ)([zT, zT]T) = (1− γ)ϕQ(z) = 0,

∀z ∈ Z, ∀ϕQ ∈ ker(U) =⇒ ϕQ = 0.

Therefore, the space Hψ with the inner product defined in (22)

is isometric to the RKHS HQ, and hence is a Hilbert space.

Next, we show that Hψ is an RKHS. Because κQ(·, z) −
γκQ(·, w) ∈ HQ, it is true that κ(·, [zT, wT]T) ∈ Hψ.

Moreover, it holds that
〈

κ(·, [zT, wT]T), κ(·, [z̃T, w̃T]T)
〉

Hψ

=
〈

κQ(·, z)− γκQ(·, w), κQ(·, z̃)− γκQ(·, w̃)
〉

HQ

=
(

κQ(z, z̃)− γκQ(z, w̃)
)

− γ
(

κQ(w, z̃)− γκQ(w, w̃)
)

= κ([zT, wT]T, [z̃T, w̃T]T),

and that

〈

ϕ, κ(·, [zT, wT]T)
〉

Hψ
=

〈

ϕQ, κQ(·, z)− γκQ(·, w)
〉

HQ

= ϕQ(z)− γϕQ(w) = ϕ([zT, wT]T), ∀ϕ ∈ Hψ.

Therefore, κ(·, ·) : Z2 × Z2 → R is the reproducing kernel

with which the RKHS Hψ is associated.

APPENDIX E

PROOF OF COROLLARY 1

From the definition of the inner product in the RKHS Hψ,

it follows that
∥

∥

∥
Qφ

n

(n+1) −Qφ
n

∗∥
∥

∥

HQ

=
∥

∥

∥
ψ(n+1)
n − ψ∗

n

∥

∥

∥

Hψ

≤
∥

∥

∥
ψ(n)
n − ψ∗

n

∥

∥

∥

Hψ

=
∥

∥

∥
Qφ

n

(n) −Qφ
n

∗∥
∥

∥

HQ

.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 1998.

[2] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits and Systems

Magazine, vol. 9, no. 3, 2009.
[3] D. Liberzon, Calculus of variations and optimal control theory: a

concise introduction. Princeton University Press, 2011.

14

[4] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause,
“Safe model-based reinforcement learning with stability guarantees,” in
Proc. NIPS, 2017.

[5] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
Gaussian processes,” in Proc. CDC, 2016, pp. 4661–4666.

[6] J. Schreiter, D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Markert,
and M. Toussaint, “Safe exploration for active learning with Gaussian
processes,” in Proc. ECML PKDD, 2015, pp. 133–149.

[7] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger,
and C. J. Tomlin, “Reachability-based safe learning with Gaussian
processes,” in Proc. CDC, 2014, pp. 1424–1431.

[8] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint

arXiv:1610.03295, 2016.
[9] H. B. Ammar, R. Tutunov, and E. Eaton, “Safe policy search for lifelong

reinforcement learning with sublinear regret,” in Proc. ICML, 2015, pp.
2361–2369.

[10] D. A. Niekerk, B. V. and B. Rosman, “Online constrained model-based
reinforcement learning,” in Proc. AUAI, 2017.

[11] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. ICML, 2017.

[12] P. Abbeel and A. Y. Ng, “Exploration and apprenticeship learning in
reinforcement learning,” in Proc. ICML, 2005, pp. 1–8.

[13] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning
of quadrotor dynamics using barrier certificates,” arXiv preprint

arXiv:1710.05472, 2017.
[14] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-

ment learning,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437–1480,
2015.

[15] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469–483, 2009.

[16] P. Geibel, “Reinforcement learning for MDPs with constraints,” in
Proc. ECML, vol. 4212, 2006, pp. 646–653.

[17] S. P. Coraluppi and S. I. Marcus, “Risk-sensitive and minimax control
of discrete-time, finite-state Markov decision processes,” Automatica,
vol. 35, no. 2, pp. 301–309, 1999.

[18] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine

learning. MIT press Cambridge, 2006, vol. 1.
[19] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of

control barrier functions for safety critical control,” Proc. IFAC, vol. 48,
no. 27, pp. 54–61, 2015.

[20] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” Proc. IFAC, vol. 40, no. 12, pp. 462–467, 2007.

[21] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions
with applications to multi-robot systems,” IEEE Control Systems Letters,
vol. 1, no. 2, pp. 310–315, 2017.

[22] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Trans. Robotics, 2017.

[23] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs with application to automotive safety
systems,” arXiv preprint arXiv:1609.06408, 2016.

[24] A. Agrawal and K. Sreenath, “Discrete control barrier functions for
safety-critical control of discrete systems with application to bipedal
robot navigation,” in Proc. RSS, 2017.

[25] W. Liu, J. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering. New
Jersey: Wiley, 2010.

[26] K. R. Müller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An
introduction to kernel-based learning algorithms,” IEEE Trans. Neural

Networks, vol. 12, no. 2, pp. 181–201, 2001.
[27] B. Schöelkopf and A. Smola, Learning with kernels. MIT Press,

Cambridge, 2002.
[28] M. Yukawa, “Multikernel adaptive filtering,” IEEE Trans. Signal Pro-

cessing, vol. 60, no. 9, pp. 4672–4682, Sept. 2012.
[29] ——, “Adaptive learning in Cartesian product of reproducing kernel

Hilbert spaces,” IEEE Trans. Signal Processing, vol. 63, no. 22, pp.
6037–6048, Nov. 2015.

[30] O. Toda and M. Yukawa, “Online model-selection and learning for
nonlinear estimation based on multikernel adaptive filtering,” IEICE

Trans. Fundamentals of Electronics, Communications and Computer

Sciences, vol. 100, no. 1, pp. 236–250, 2017.
[31] M. Ohnishi and M. Yukawa, “Online learning in L2 space with multiple

Gaussian kernels,” in Proc. EUSIPCO, 2017, pp. 1594–1598.
[32] ——, “Online nonlinear estimation via iterative L2-space projections:

Reproducing kernel of subspace,” arXiv preprint arXiv:1712.04573,
2017.

[33] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Proc. ICML, 1995, pp. 30–37.

[34] S. Mahadevan, B. Liu, P. Thomas, W. Dabney, S. Giguere, N. Jacek,
I. Gemp, and J. Liu, “Proximal reinforcement learning: A new theory
of sequential decision making in primal-dual spaces,” arXiv preprint

arXiv:1405.6757, 2014.
[35] Y. Engel, S. Mannor, and R. Meir, “Reinforcement learning with

Gaussian processes,” in Proc. ICML, 2005, pp. 201–208.

[36] D. Ormoneit and Ś. Sen, “Kernel-based reinforcement learning,” Ma-
chine learning, vol. 49, no. 2, pp. 161–178, 2002.

[37] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration for
reinforcement learning,” IEEE Trans. Neural Networks, vol. 18, no. 4,
pp. 973–992, 2007.

[38] B. Bethke, J. P. How, and A. Ozdaglar, “Kernel-based reinforcement
learning using Bellman residual elimination,” in MIT Working Paper,
2008.

[39] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[40] G. Tesauro, “Temporal difference learning and TD-Gammon,” Commu-

nications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.
[41] J. N. Tsitsiklis and B. Van R., “Analysis of temporal-diffference learn-

ing with function approximation,” in Advances in Neural Information
Processing Systems, 1997, pp. 1075–1081.

[42] J. A. Boyan, “Least-squares temporal difference learning,” in
Proc. ICML, 1999, pp. 49–56.

[43] R. S. Sutton, H. R. Maei, and C. Szepesvári, “A convergent O(n)
temporal-difference algorithm for off-policy learning with linear function
approximation,” in Advances in Neural Information Processing Systems,
2009, pp. 1609–1616.

[44] M. Geist and O. Pietquin, “A brief survey of parametric value function
approximation,” Rapport Interne, Supélec, 2010.

[45] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math. Soc.,
vol. 68, no. 3, pp. 337–404, May 1950.

[46] I. Steinwart, “On the influence of the kernel on the consistency of
support vector machines,” J. Mach. Learn. Res., vol. 2, pp. 67–93, 2001.

[47] Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A sparse
adaptive filtering using time-varying soft-thresholding techniques,” in
Proc. IEEE ICASSP, 2010, pp. 3734–3737.

[48] I. Yamada and N. Ogura, “Adaptive projected subgradient method for
asymptotic minimization of sequence of nonnegative convex functions,”
Numerical Functional Analysis and Optimization, vol. 25, no. 7&8, pp.
593–617, 2004.

[49] A. Berlinet and A. C. Thomas, Reproducing kernel Hilbert spaces in
probability and statistics. Kluwer, 2004.

[50] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[51] M. L. Puterman and S. L. Brumelle, “On the convergence of policy iter-
ation in stationary dynamic programming,” Mathematics of Operations

Research, vol. 4, no. 1, pp. 60–69, 1979.
[52] D. Pickem, L. Wang, P. Glotfelter, Y. Diaz-Mercado, M. Mote, A. Ames,

E. Feron, and M. Egerstedt, “Safe, remote-access swarm robotics re-
search on the robotarium,” arXiv preprint arXiv:1604.00640, 2016.

[53] L. V. Ahlfors, “Complex analysis: an introduction to the theory of
analytic functions of one complex variable,” New York, London, p. 177,
1953.

[54] H. Q. Minh, “Some properties of Gaussian reproducing kernel Hilbert
spaces and their implications for function approximation and learning
theory,” Constructive Approximation, vol. 32, no. 2, pp. 307–338, 2010.

[55] R. A. Ryan, Introduction to tensor products of Banach spaces. Springer
Science & Business Media, 2013.

[56] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press
Wellesley, MA, 1993, vol. 3.

