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Abstract: Multi-agent robotics involves the coordination of large numbers of robots, which
leads to significant challenges in terms of collision avoidance. This paper generates provably
collision free swarm behaviours by constructing swarm safety control barrier certificates. The
safety barrier, implemented via an optimization-based controller, serves as a low level safety
controller formally ensuring the forward invariance of the safe operating set. In addition,
the proposed method naturally combines the goals of collision avoidance and interference
with the coordination laws in a unified and computationally efficient manner. The centralized
version of safety barrier certificate is designed on double integrator dynamic model, and then
a decentralized formulation is proposed as a less computationally intensive and more scalable
solution. The safety barrier certificate is validated in simulation and implemented experimentally
on multiple mobile robots; the proposed optimization-based controller successfully generates
collision free control commands with minimal overall impact on the coordination control laws.

1. INTRODUCTION

The literature on multi-robot coordination strategies tra-
ditionally focuses on the design of localized coordination
rules with provable, global properties such as achieving
and maintaining formation, covering areas, or tracking
boundaries, e.g., Bullo et al. (2009); Mesbahi and Egerst-
edt (2010). However, what is actually deployed on teams
of robots must also be safe in the sense that collisions are
avoided, which typically calls for a secondary, low-level
collision-avoidance controller that takes over the operation
of the robots as they get too close to each other, e.g., Arkin
(1998). The consequence of this construction is that what
is tested is, in reality, a combination of the “formally”
designed algorithm in conjunction with the “hand-crafted”
collision-avoidance controller. Furthermore, as the num-
ber of robots increases, the “robot density” increases as
well, with the result that the collision-avoidance controller
starts to dominate the behavior of the robot team which
means that the desired, global properties can no longer be
ensured, e.g., Roumeliotis and Mataric (2000).

One solution to the problem of avoiding collisions is to
make collision-avoidance an integral part of the coordi-
nated control design. However, this significantly increases
the complexity of the design-task and, more importantly,
makes the many proposed design tools (see the textbooks
Bullo et al. (2009); Mesbahi and Egerstedt (2010); Ren and
Beard (2008) for a representative sample of these tools and
techniques) no longer applicable. A remedy to this problem
is to let the coordinated control design proceed without
taking collisions into account and then ensure that the
safety controllers are minimally invasive in the sense that

they do as little as possible unless collisions are absolutely
imminent. This idea was pursued in Tomlin et al. (1998)
for pairs of kinematic aircraft and, based on global optimal
control, hybrid control laws were developed that dictated
when the aircraft needed to switch from their current
mode of operations to an evasive maneuver in order to
avoid collisions. Although elegant, the computational costs
associated with solving the full-fledged Hamilton-Jacobi-
Bellman Equations quickly become prohibitive when scal-
ing up from two to more agents. Moreover, even for two
agents, the problem cannot be solved in real-time; instead,
the solution is viewed as a precomputed evasive maneuver
that is stored and, subsequently, deployed by the aircraft.

The goal of this paper is to develop controllers that re-
spect desired coordinated control laws as much as possible
(in a least-squares sense) while simultaneously guaran-
teeing collision-free behavior. The key tool for producing
these safety-critical controllers us to utilize control barrier
certifications to prevent the robots from entering unsafe
sets—naturally expressed in a minimally invasive fashion
through the use of optimization-based controllers. Building
upon the notion of barrier certificates proposed by Prajna
et al. (2007), and adopting the control barrier function
analogue recently proposed by Ames et al. (2014), safety
constraints that prevent collision yield an inequality con-
straint affine in the control input. A given control law
for coordination can then be implemented in the cost of
an quadratic program (QP) based control law with con-
straints given by the safety barrier certificate that enforces
collision free behavior. The resulting provably safe algo-
rithm is applied to arbitrarily large teams of mobile robots
in both centralized and decentralized representations.



The outline of this paper is as follows: In Section 2 we
briefly recall the control barrier certificate construction
from Ames et al. (2014) and show that the enabling
feature is the inclusion of the barrier as a constraint in
an optimization-based controller (as opposed to inclusion
in the cost, as is traditionally done; see Panagou et al.
(2013)). In Section 3, we show how the barrier certificates
can be designed in a centralized manner, i.e., by an exter-
nal computational unit that has access to the states of all
robots in the swarm. In order to reduce the computational
burden, it is shown that it is enough to consider robots
that are sufficiently close together, i.e., barriers must be
considered only between a small subset of agents. This
observation is what leads to a decentralized formulation in
Section 4, where the individual robots themselves compute
their own barrier certificates and corresponding, safe con-
trol actions based solely on locally available information.
In Section 5, the control laws are experimentally imple-
mented on a team of mobile robots, and the concluding
remarks and future directions are the topics of Section 6.

2. BACKGROUND: BARRIER CERTIFICATES

Consider a nonlinear system of the form

ẋ = f(x) + g(x)u (1)

for x ∈ Rn and u ∈ U ⊂ Rm, with f and g assumed to
be locally Lipschitz. For a given set of C ⊂ Rn, the goal
is to generate a controller that ensures invariance of the
set C, i.e., solutions to (1) that start in C stay in C for all
time. Establishing invariance of C can be done through the
use of a barrier function B : C → R (or barrier certificate;
see Prajna et al. (2007)). In particular, if B satisfies the
properties:

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) =∞ (2)

then the question becomes: how does one constraint the
behavior of Ḃ(x, u) to ensure invariance of C?
Conventional design of barrier functions assumed invariant
level sets of C, i.e. Ḃ ≤ 0 (Tee et al., 2009). Yet this
condition is unnecessarily strict, restricting the availability
of control inputs to (1) aimed at achieving goals unrelated
to safety, e.g., coordination. To address this, Ames et al.
(2014) recently presented a novel formulation that relaxes
the conditions on the change in B to only require that:

Ḃ ≤ γ

B
(3)

with γ > 0. It was shown that this condition still ensures
invariance of C yet, since B is allowed to grow at a
rate proportional to the distance of the system from the
boundary of C, the set of available control inputs that keep
the system safe is greatly increased. Suppose that the set
C is given by

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0},
(4)

for a smooth function h : Rn → R. Then the condition (3)
naturally leads to a notion of a control barrier function:

Definition 1 : For the dynamical system (1), a function
B : C → R is a control barrier function (CBF) for the set
C defined by (4) for a continuously differentiable function

h : Rn → R, if there exist locally Lipschitz class K
functions α1, α2 such that, for all x ∈ Int(C),

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
(5)

inf
u∈U

[
LfB(x) + LgB(x)u− γ

B(x)

]
≤ 0 (6)

Given a CBF B, consider the set:

Kcbf (x) =

{
u ∈ U : LfB(x) + LgB(x)u− γ

B(x)
≤ 0

}
(7)

wherein it was shown in Ames et al. (2014):

Theorem [Ames et al. (2014)]. Given a set C ⊂ Rn defined
by (4) with associated control barrier function B, any
Lipschitz continuous controller u(x) ∈ Kcbf (x) for the
system (1) renders the set C forward invariant.

Note that in Ames et al. (2014), control barrier functions
were only constructed in the case when h has relative
degree 1 (this was extended to higher relative degrees
in Hsu et al. (2015)), and applied to adaptive cruise
control. In this paper we want to explore the application
of CBFs in a multi-agent environment, where each agent
is constrained by their own set of CBFs.

3. CENTRALIZED SAFETY BARRIER
CERTIFICATES

This section focuses on developing minimal invasive safety
barrier certificate for swarm behaviors. We first propose a
centralized safety barrier certificate that is less intrusive
to the nominal controller, but at an expense of central
coordination. Then the safety barrier certificate will be
decentralized in Section 4 by relaxing some parameters,
which leads to a scalable but more conservative solution.

3.1 Problem Formulation

Let M = {i | i = 1, 2, . . . , N} be the set of N mobile
agents. The dynamics of agent i in the robot swarm is
given by [

ṗi

v̇i

]
=

[
0 I

0 0

] [
pi

vi

]
+

[
0

I

]
ui, (8)

where pi ∈ R2, vi ∈ R2, and ui ∈ R2 are the position,
velocity, and acceleration of agent i respectively. The
velocity and acceleration limits are ‖vi‖p ≤ vmax and
‖ui‖p ≤ amax, where ‖ · ‖p is vector p−norm decided by
actual robot model. The relative position between agent i
and agent j is denoted as ∆pij = pi−pj , relative velocity
is ∆vij = vi − vj .

The safety constraint of the robot swarm requires that all
agents should always keep safety distance Ds from each
other. A pairwise safety constraint on relative velocity and
relative position:

−
∆pTij
‖∆pij‖

∆vij ≤
√

2∆amax(‖∆pij‖ −Ds),∀i 6= j (9)

is considered so as to regulate the dynamics of all robot
agents within admissible range. This pairwise safety con-
straint is inspired by the idea of always keeping safety



distance while applying the maximum braking force until
relative velocity equals zero, which is adopted by many
classic collision avoidance literature (see Fox et al. (1997),
Ogren and Leonard (2005)). The pairwise robot agent
collision avoidance case is a variation of single agent case,
where both agents involved are actively reacting to safety
threats. As illustrated in Fig. 1, the normal component

of relative velocity ∆v̄ =
∆pT

ij

‖∆pij‖∆vij is considered as the

actual component that causes collision, while the tangent
component only leads to rotation around each other.

Agent i

Agent j

∆pij

∆vij

∆v̄

Fig. 1. Relative position and velocity between agent i, j

The maximum relative braking acceleration is ∆amax =
2amax, because both agents are avoiding collision collab-
oratively in the centralized case. Assuming the relative
velocity in the normal direction is ∆v̄(t0) at the current

time instance, it takes Tb = 0−∆v̄(t0)
∆amax

to reach ∆v̄(t0 +

Tb) = 0, when the maximum relative braking acceleration
∆amax is applied. The safety constraint requires that two
agents should always keep a safety distance Ds away from
each other:

‖∆pij‖+

∫ t0+Tb

t0

∆v̄(t0 + t) dt ≥ Ds, ∀i 6= j.

Since ∆v̄(t0 + t) = ∆v̄(t0) + ∆amaxt, we obtain:

‖∆pij‖ −
(∆v̄)2

2∆amax
≥ Ds, ∀i 6= j. (10)

Note that this constraint is only active when two agents are
moving closer to each other (∆v̄ < 0), and no constraint is
applied when two agents are moving away from each other
(∆v̄ ≥ 0). Combining Eqn. (10) with the two cases of ∆v̄
gives the safety constraint presented in Eqn. (9).

We construct a control barrier function Bij candidate from
the pairwise safety constraint as follows:

hij =
∆pTij
‖∆pij‖

∆vij +
√

2∆amax(‖∆pij‖ −Ds) (11)

Bij :=
1

hij
, ∀i 6= j, (12)

where hij is short for hij(∆pij ,∆vij), and Bij is short for
Bij(∆pij ,∆vij). Note that from hij we get corresponding
sets Cij as in Eqn. (4), and that Bij satisfies (5) for
α1(r) = α2(r) = r. Therefore, as discussed in Section 2,

Bij is a CBF if it satisfies the condition: Ḃij ≤ γ
Bij

, in

which case the forward invariance of the safety operating

sets Cij is guaranteed. Taking the time derivative of Bij ,

we can reformulate Ḃij ≤ γ
Bij

as linear constraints on the

control variable u:

−∆pTij∆uij ≤
γ

Bij
h2
ij‖∆pij‖ −

(∆vTij∆pij)
2

‖∆pij‖2

+ ‖∆vij‖2 +
∆amax∆vTij∆pij√

2∆amax(‖∆pij‖ −Ds)
, ∀i 6= j (13)

This safety barrier constraint in Eqn. (13) can be repre-
sented as Aiju ≤ bij , where

Aij = [0, ...,−∆pTij︸ ︷︷ ︸
agent i

, ..., ∆pTij︸ ︷︷ ︸
agent j

, ..., 0],

and u = [uT1 , u
T
2 , ...,u

T
N ]T and bij is the right side of (13).

3.2 Minimally Invasive Collision Avoidance using QPs

In order to develop minimally invasive collision avoidance
strategies, we formulate the problem as a quadratic pro-
gram (QP) that minimizes the difference between the nom-
inal control command ûi and actual control command ui
subjected to safety barrier constraints. Note that this is a
point-wise minimizer, because future coordination control
command is unknown to the low level safety program. As
discussed in Section 3.1, safety barrier constraints serve
as linear constraints on the control variable with the end
result being the following QP based controller:

u∗ = argmin
u

J(u) =

N∑
i=1

‖ui − ûi‖2

s.t. Aiju ≤ bij , ∀i 6= j,

‖ui‖∞ ≤ amax, ∀i ∈M

(14)

where ∞-norm is adopted in the acceleration limit for
simplicity; while other p−norms can also be used, the
constraints on QP will no longer be linear. Note that
the online computation of a QP is very efficient, which
enables real-time implementation of this algorithm on
swarm robotic platform.

3.3 Notion of Neighbor

Centralized barrier certificates lead to increased compu-
tation burden and sensing requirement as robot swarm
size grows, since a central brain needs to perform all the
computation and each agent needs to form a CBF with
every other agent in the swarm. In the effort to reduce
computation and sensing requirements, we formulate a no-
tion of “neighbor” to reduce the necessary pairs of CBFs.
This notion is motivated by the fact that some agents
will not cause collision when they are sufficiently far away
and robots have limited sensing range. By removing those
inactive safety barrier constraints, we can significantly
reduce computation complexity of the QP and sensing
requirements. The neighbor set of agent i is defined as

Ni = {j | ‖∆pij‖ ≤ DN , DN = Ds

+
1

2∆amax
( 3

√
2∆amax

γ
+ ∆vmax)2, j 6= i} (15)

Since only the distance Dij = ‖∆pij‖ between agent i and
j is of interest, hij(∆pij ,∆vij) can be rewritten in terms

of Dij and Ḋij in the following manner:



hij = Ḋij +
√

2∆amax(Dij −Ds), ∀i 6= j, (16)

Notice that Ḋij = ˙√
∆pij ·∆pij =

∆pT
ij

‖∆pij‖∆vij and

Dij ≥ Ds. The following result enables decentralized
implementation of swarm control barrier certificates:

Theorem 1. Agent i ∈ M only needs to form CBFs with
its neighbors defined in Eqn. (15) to guarantee safety.

Proof. For any agent k /∈ Ni, k 6= i, i.e., Dik > DN , we
will prove that it is guaranteed to satisfy the safety barrier
constraint; therefore, there is no need to form CBF with
any agent k outside of the safety disk D(pi, DN ) centered
at pi. The derivative of the CBF Bik is given by

Ḃik = − 1

h2
ik

(D̈ik +
∆amax√

2∆amax(Dik −Ds)
Ḋik) (17)

Considering the velocity and acceleration limits of both
agents, the largest increase rate is achieved when D̈ik =
−∆amax and Ḋik = −∆vmax, which corresponds to the
situation when two agents are heading towards each other
at the maximum possible velocity and acceleration. In this
worst case scenario, we have

hik ≥
√

2∆amax(Dik −Ds)−∆vmax (18)

Ḃik ≤
∆amax
h2
ik

(1 +
∆vmax√

2∆amax(Dik −Ds)
) (19)

Since Dik > DN , we get
√

2∆amax(Dik −Ds) > ∆vmax

and hij > 3

√
2∆amax

γ . The upper bound on the derivative of

the CBF in (19) can be further relaxed to Ḃik <
2∆amax

h2
ik

.

Combining these inequalities with (12) results in:

Ḃik <
2∆amax
h3
ik

1

Bik
<

γ

Bik
(20)

By choosing DN = Ds+ 1
2∆amax

( 3

√
2∆amax

γ +∆vmax)2, we

can guarantee that the time derivative of the CBF Ḃik is
always bounded by γ

Bik
and so (6) is satisfied and Bik is

a valid CBF. Therefore, agents outside of the safety disk
D(pi, DN ) are always considered safe (see Section 2). 2

The value of DN is determined by γ, the velocity and
acceleration limits of mobile robots. Thus we can design
appropriate γ to ensure DN is smaller than the sensing
range to guarantee safety. Note that although the notion
of neighbor is derived for the centralized case, the same
idea also applies to decentralized case.

3.4 Simulation results of centralized barrier certificate

This section presents simulation results of centralized
barrier certificate applied on a multi-robot test-bed. 20
mobile robots modeled with double integrator dynamics
operate with coordination control law ûi = −k1(pi −
ri) − k2vi, which drives it to desired reference position
ri with final velocity of zero. This nominal controller is
implemented in (14) to ensure collision avoidance. All the
agents started equally spaced on the cross markers on a
circle (Fig. 2a), and moved towards the opposite side of
the circle with specified coordination control law. This

coordination control law would lead to collision at the
center if no collision avoidance strategy is considered. At
the beginning (Fig. 2b), agents followed the coordination
control command and moved to the opposite side of the
circle. When they get closer (Fig. 2c), the CBF constraint
forces the agents to keep the required safety distance. At
the same time, they started rotating around the center to
move to the other side of the circle. After the agents passed
the “crowded” region (Fig. 2d), they started separating
and heading directly toward the goal position.
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Fig. 2. Simulation of centralized swarm barrier certificate
with 20 mobile robot agents, the arrow represents
current velocity of the agent, Ds = 10

The safety barrier certificates not only successfully avoid
collision between robot agents, but also minimizes the
interference to a pre-specified coordination control com-
mand. As illustrated in Fig. 3, the controller adopts coor-
dination control command when collision is not imminent.
As soon as the coordination control command leads to
robot collision, the safety barrier dominates the controller
and computes a safe control closest to coordination control
law. Because of the second-order dynamics and safety con-
straints, all agents always maintain practical and smooth
velocity trajectories. As discussed in Section 2, the im-
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Fig. 3. Control variable and velocity of two selected agents

proved CBF constraint (Ḃ ≤ γ
B ) provides more available

control options while maintaining forward set invariance.
The parameter γ ≥ 0 decides how fast the system can
approach the boundary of safety set. As illustrated in



Fig. 4, smaller γ will make the system more conservative
by intervening sooner. Thus, larger value of γ is more
desirable for our particular application as it provides the
coordination controller with more freedom. However, prac-
tical implementation issues will limit the size of γ.
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(a) Distance between agents, γ =
5e− 3
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(b) Distance between agents, γ =
5e− 4
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5e− 5

Fig. 4. Distance between selected agents with different γ

Since the proposed algorithm is based on QP, and adding
safety threats is equivalent to adding linear constraints,
it executes efficiently at 50Hz for a 20-agents multi-robot
simulation. This enables the safety barrier certificate to be
applied in real-time on a swarm robotics platform.

4. DECENTRALIZED SAFETY BARRIER
CERTIFICATES

In the previous section, we introduced a centralized swarm
control barrier certificate, producing convincing results for
minimal invasive collision avoidance. Due to its central-
ized nature, the algorithm (14) must be run on a master
node, and only afterwards can the control signal u∗i be
distributed. Current research interest however is to try and
decentralize multi-agent robotics, demanding a decentral-
ized collision avoidance algorithm. Secondly even with the
notion of neighbours, the number of agents that have to
be considered can be prohibitive for the centralized case.
In order to decentralize the algorithm, we let each agent
i ∈M run their own QP on board:

u∗i = argmin
ui

J(ui) = ‖ui − ûi‖2, ∀i ∈M

s.t. Aiju ≤ bij , j ∈ Ni,
‖ui‖∞ ≤ amax,

(21)

where Aij = [0, ...,−∆pTij , ..., 0], the safety constraints
are the same as in the centralized case. So, instead of
minimizing the sum of differences, each node minimizes
its own difference, subject to the CBF constraints and
assuming that the other agents keep a constant velocity.

4.1 Assumption on Behaviour of Other Agents

As opposed to the centralized case, there is no coordination
between the agents, so each agent has to make assumptions

on how the other agents will react to impending viola-
tions of the safety constraints. There are three possible
behaviour patterns for each agent: the other agent can
actively chase the current agent, be neutral towards the
agent, i.e. just continue on its path, or actively avoid
a collision. Depending on the assumed pattern, different
behaviours will result. This can be done by slightly altering
the boundary function (11). Instead of assuming a fixed
∆amax, we introduce a discrete variable cij that by scaling
∆amax decides what behaviour will be assumed:

hij =
∆pTij
‖∆pij‖

∆vij +
√
cij∆amax(‖∆pij‖ −Ds), (22)

with cij ∈ {0, 1, 2}. For cij = 0, agent i assumes that agent
j will show aggressive behaviour towards it; for cij = 1,
it assumes neutral behaviour; and for cij = 2, it assumes
agent j will try to avoid the collision as well.
The lower cij the more conservative the avoidance be-
haviour is, as can be seen in Fig. 5. For c12 = c21 = 0, the
two agents do not move towards each other, but instead
begin skirting around each other immediately (shown as a
solid line). For c12 = c21 = 1, in the beginning the agents
move towards each other, but then start avoidance be-
haviours (shown as a dash-dot line). If both agents assume
that the other agent also tries to actively avoid collision,
that is c12 = c21 = 2, they move even closer together,
before sidestepping each other (as shown in a dashed lines).
Another advantage of introducing this decision variable is
that a central instance can use this to prioritize one agent
over all the others.
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Fig. 5. Comparison of the agents for different assumptions
on the reaction of the other agents.

4.2 Simulation Results

The decentralized safety barrier certificate (21) was eval-
uated using the same nominal controller as introduced
in 3.4 and identical initial positions. As in the previous
example, in the beginning (Fig. 6b), the agents followed
the coordination control command and moved towards the
opposite side of the circle. When they got closer (Fig. 6c),
the safety barriers force the agents to keep required safety
distance. At the same time, they started negotiating a way
around each other to reach the other side of the circle.
After the agents successfully passed each other (Fig. 6d),
they separate and head directly towards the final position.
Therefore, the decentralized safety barrier certificate suc-

cessfully avoids collisions. Yet compared with the cen-
tralized version, it is more conservative, choosing slower
velocities for the same distances. As there is no central
coordination, the paths taken by each individual robot
can be far more convoluted than in the central case. For
example in Fig. 6d one agent has already reached it’s
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Fig. 6. Simulation of decentralized swarm barrier certifi-
cate with 20 mobile robot agents, the arrow represents
current velocity of the agent, Ds = 10
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final position, while the other agents are still stuck in the
middle. This also corresponds to Fig. 7, the distance from
agent 4 to 5 increases to 140, as agent 4 is already at the
goal and agent 5 is still stuck in the middle.

5. EXPERIMENTAL RESULTS

The swarm control barrier certificate, realized via the
optimization-based controller, is implemented on a multi-
robot platform with four Khepera III robots and Optitrack
motion capture system. The diffeomorphism controller in
Lawton et al. (2003) is used to approximate the nonholo-
nomic unicycle dynamics with holonomic double integrator
dynamics. Each robot agent executes the same coordina-
tion control law as described in section 3.4. Four robot
agents start at four corners of a rectangle and move along
the diagonal line to the opposite side of the rectangle. If
no collision avoidance maneuver is planned by the coordi-
nation controller, the agents would meet and collide.

In order to compare the performance of the centralized
(14) and decentralized (21) swarm barrier certificates, both
of them were implemented as low level safety controllers
on the robot agents. Fig. 8 illustrates the trajectory of
four robot agents with centralized barrier certificate. All
agents started heading toward the center as specified by
the coordination control law (Fig. 8a). When collision
is about to happen, the CBF constraint becomes active
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(d) Agent at 4.00s −1 −0.5 0 0.5
−0.5

0
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1 t = 4.00s

Fig. 8. Experiment of 4 robot agents with central-
ized swarm barrier certificate. The arrow, circle and
dashed line represent current velocity, current posi-
tion and trajectory the agent, Ds = 0.2m, γ = 0.1.
The units for X and Y direction of all figures are
meters. A video can be found Online (2015).

and dominates the coordination control command (Fig.
8b). The optimization-based controller forces the robots
to move around the center to maintain safety distance,
while moving closer to the goal (Fig. 8c). Ultimately, the
robot agents navigate out of the “crowded” region safely
due to the control barrier certificate.

Decentralized control barrier certificates yielded similar
results as the centralized case as shown in Fig. 9. Robot
agents with decentralized control barrier functions are
more conservative when compared with the centralized
case, as they prefer lower velocity manurers when they
are close to the boundary of the safe set and take more
time (6.5s vs. 5.5s) to finish the same task. Note that the
robot agents would very likely enter a deadlock situation in
a perfectly symmetric case. However, disturbances intro-
duced by noise, sensing and actuation inaccuracy perturb
the robots out of the deadlock region in the experiment.
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Fig. 9. Trajectories of 4 robot agents with decentral-
ized swarm barrier certificate. The arrow, circle and
dashed line represent current velocity, current posi-
tion and trajectory the agent. Ds = 0.2m, γ = 0.1

As shown in Fig. 10, all agents keep a safe distance (red
dotted line is the safety distance, Ds = 0.2m) throughout
the experiment in both centralized and decentralized cases.
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Fig. 10. Distance between agent 1 and other agents

6. CONCLUSIONS AND FUTURE WORK

The safety barrier certificates proposed in this paper,
as realized by optimization-based controllers, provides a
mathematically elegant solution to multi-agent collision
avoidance, validated by both simulation and experiment.
These results raise several interesting problems for future
research. When the agents form some symmetric geometric
formations in the simulation, we found constellations in
which the interaction between CBFs leads the agents into
deadlock situations. For 2 agents this constellation is a zero
measure set, but for three or more agents, the constella-
tions lie in a stable region of attraction. The possibility
of deadlock determines if the task will be successfully
completed, and therefore the ability to characterize this
phenomena is important. One possible solution would be
to geometrically characterize the deadlock regions and use
them to synthesize CBFs.

Current version of CBFs require the dynamics of the
robots to be affine in control. In this paper, we pursued
the double integrator dynamics, which is representative

yet limited. Most actual robots can be modelled more
accurately with nonholonomic dynamics, e.g. Khephera
III robots used in experiments are better modelled with
unicycle dynamics. When approximating nonholonomic
dynamics with double integrator dynamics, the safety
guarantee brought by safety barrier certificates might be
compromised. As a consequence, it would be important to
design a CBF and QP controller directly for actual robot
models. This proves difficult, as CBF constraints on non-
affine nonlinear dynamic systems are no longer affine in
the control input.
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